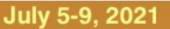


Educational, Scientific and . Training Center on Erosion

Cultural Organization • and Sedimentation



WASER

Online monitoring of suspended sediment concentration at the Zhicheng Gauging Station on the Yangtze River

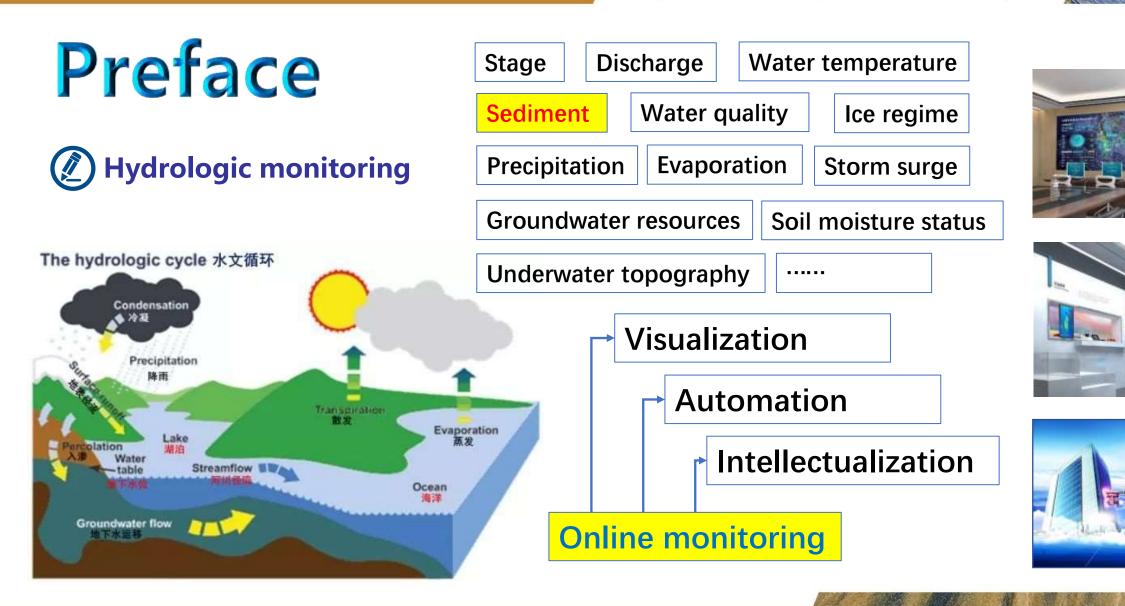
Jingjiang Bureau of Hydrological and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission Address: Jingzhou City, Hubei Province, China Website: www.cjwjjj.com.cn, jj.cjh.com.cn Dibing Xu, Email: jjxudb@cjh.com.cn

8:00-10:00 Coordinated Universal Time (UTC)

ral European Summer Time (CEST)

01C) Eastern European Si 09:00-11:00

11:00-13:00 Eastern European Summer Time (EEST)


Western Africa Time (WAT)

10:00-12:00 Central Africa Time (CA UNESCO-ISI Online Training Workshop on Sediment Transport Measurement and Monitoring

Online Webinar

WASER

WASER

I. Basic techniques for suspended load measurement in rivers

II. Innovative idea of monitoring method of suspended sediment

Outline

III. On-line monitoring experiment at Zhicheng Gauging Station

IV. Discussion on application problems

V. Summary and outlook

Part 01

Basic techniques for suspended load measurement in rivers

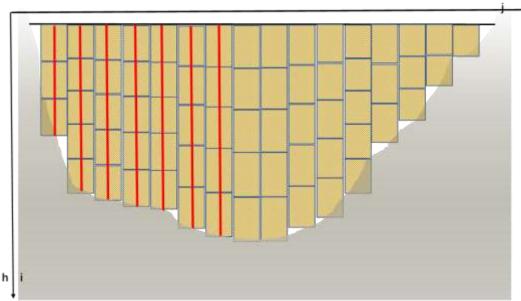
WASER

Sediment measurement

Measurement of the form, quantity and evolution process of sediment movement in a river or water body, and the calculation of the scour and sedimentation volume in a certain section of a river or water body, including the suspended load discharge, bed load discharge, bed material measurement and sediment particle size analysis.

Suspended load

Sediment suspended in water and moved with the stream by the turbulent action of the current.


Suspended load discharge measurement

An operation to measure the quality of suspended sediment passing through a cross-section of a river or channel in unit time.

Suspended load discharge measurement principle

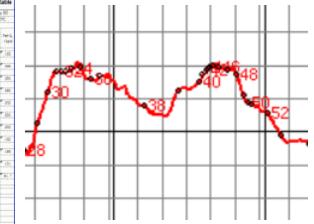
$$Q_{s} = \int_{0}^{B} \int_{0}^{H} C_{s} V dh db$$
$$Q_{s} = \sum_{j}^{m} \sum_{i=1}^{n} C_{s_{ij}} V_{ij} \Delta h_{i} \Delta b_{j}$$

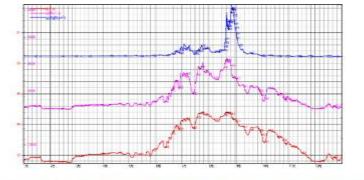
WASER

1.1 Measuring methods for suspended load in rivers

Single sediment measure

Sediment process control

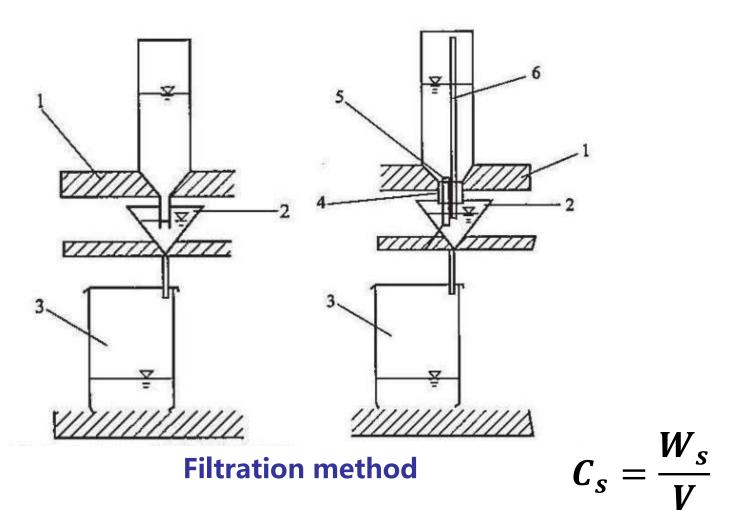

Data Process



Nation II				Sarten 3542 Extens 00.0				Gargerry yes Friedow Ellotest year weight 15%g			125	iles .	Patrology 88		
												147			
3md 30				Amagine 202				Third proping names 2. From				24	N.:		
		-	40	. 18 Nasty	2.5	tere inj			4 5/110	843118 19846 1995	t. nunl	Par Avel in To day Superio In	evi date	100	Terl Terl
21	÷.	*M.I	14		1					1		71.100			P 161
	D.	7 ==	723.6		4.18		7400			1	1.8.1	1.120	-	LINK	<u>, 1</u>
			112	100	11.4						1	10.180	-	1-1-1	1
1.1	1	7.=	tit?	11	4.16		1400		-		0.1	1. 100 I	-		1
1		1		1.4.8	11.7	40184						10.048	1.1	Past	10
8 3	1.8	400	n.	4.2	4.54	30401	7 400		-	-	8.1	1.1.	-	1	1
	-	1.00	Pas. 1	43	18.2	22464	100	-	-	-	101	1.148		zict	7.10
414	. 0	1.000	132.6	1.1	4.10	2000	400	-		-	1.41		1.1.1	1.5	
11	1	1.00	10.6	694	拾音		1400	-	-		1.11	8.100	100	000	1 10
1	1.0	1	1	1 11	14.1		-A	-	- · · ·	-	1			1000	
		7 100	Fire	102	114	10.00	200		1	1.1	1.1.1	1.108		1112	7.16
	10		1.15	1	7.4.2	10.4			-	11.		1:100	-	* etat	1 10
111	T	7.100	124	112	1.10	1000	74.05		-	2	7 11	LE 100		1041	<u>,</u>
				11.1	1111	30994						12.146	-	1.00	Y
8.4	1.8	100	126.4	.5.2	110		1000				21	1	-	-	-
-	1	2	1.0	1.1	n.i	12004	E -	11				Kilm		P unt	7 10
11.1	Ŧ	1100	14.1	62	6.91	11.010	400		_		61		-	-	
1		*1100		1.1	11.7	81204			-	-	1 2.1	10.000	1.1	1004	7.13
-		C LLAN			167		1.4000	-	-		1.1	1.5.1	1.11		1.
	-	1004		1.4.4	1.0.4	41.194			-	÷		4.180	1.1.1	11	1.8
-		1204			1-	_			-	-				1.11	
															-
1				_	L								1		
8		MALE 1. 100			10.0	ave to LOD and there are					-				
			refert fater itt				MARY S.P. all Boll Pre-					-			
Band A								-	hes proper 10, 27 or Ben Preferences, 20, 27 or			-			
at i			Ŷ.		âs.			111	ern In Nec In	16.5		100.00	e N.F		E

WASER

1.1.1 Single sediment measure


 $C_s = \frac{W_s}{V}$

Online Webinar

1.1.1 Single sediment measure

$$W_w = K(W_{ws} - W_w)$$

$$K = \frac{\rho_s}{\rho_s - \rho_w}$$

Displacement method

WASER

m

1.1.1 Single sediment measure

Suspended load discharge measurement method

$$Q_s = \int_0^B \int_0^H C_s V dh \, db \qquad \Longrightarrow \qquad Q_s = \sum_j^m \sum_{i=1}^n C_{s_{ij}} V_{ij} \Delta h_i \, \Delta b_j \qquad \Longrightarrow$$

$$Q_s = \sum_{j=1}^{m} \sum_{i=1}^{n} C_{s_{ij}} q_{ij}$$

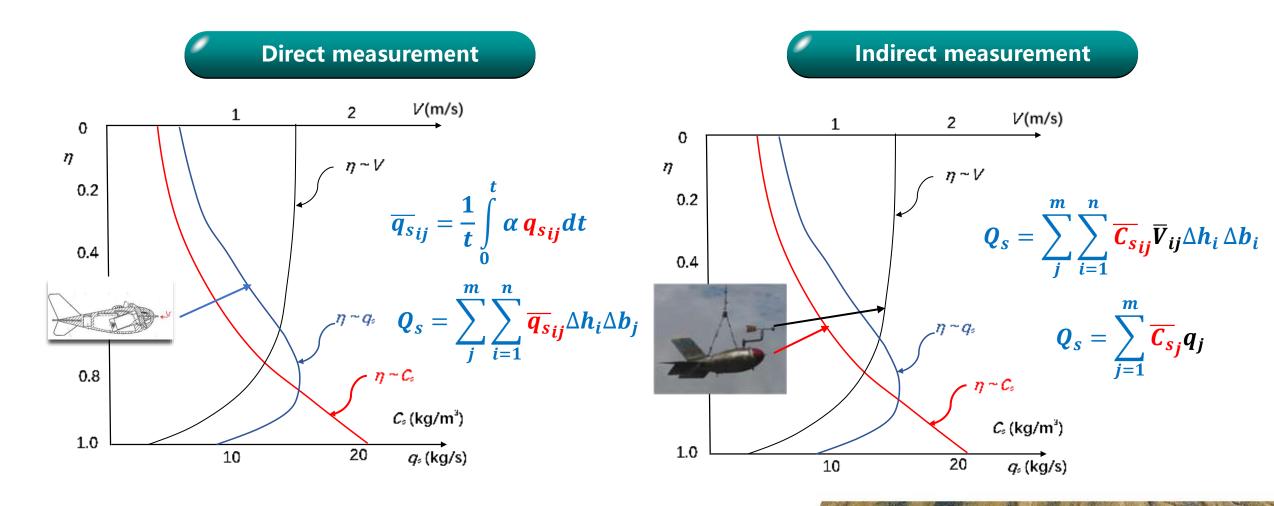
The principle of segment discharge weighted method

Sectional sediment
transport rate methodCross-section
mixing methodAsynchronous sediment
measuring method

$$\overline{C_s} = \frac{Q_s}{Q} = \frac{\sum_{i=1}^n q_{s_i}}{\sum_{i=1}^n q_i}$$

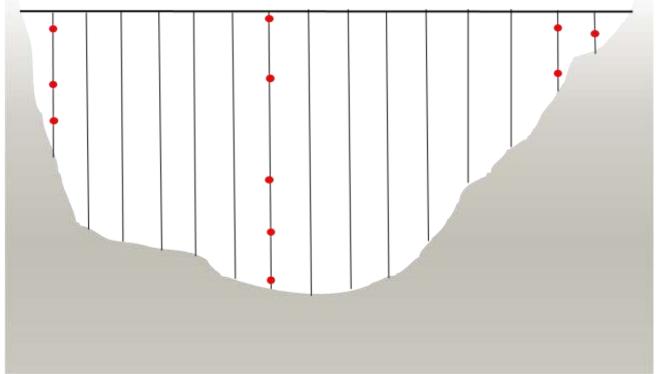
$$Q_s = \overline{C}_s Q$$

Qs & Q measuring NOT the same time


WASER

WASER

m


Suspended sediment measurement principle

1.1.1 Single sediment measure

Mean sediment concentration at a vertical (MSCV)

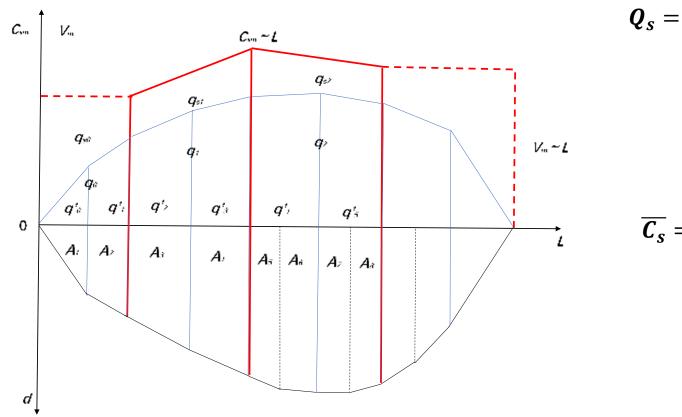
$$C_{sm} = \frac{1}{10V_m} \begin{pmatrix} V_{0.0}C_{s0.0} + 3V_{0.2}C_{s0.2} + 3V_{0.6}C_{s0.6} \\ + 2V_{0.8}C_{s0.8} + V_{1.0}C_{s1.0} \end{pmatrix}$$

$$C_{sm} = \frac{V_{0.2}C_{s0.2} + V_{0.6}C_{s0.6} + V_{0.8}C_{s0.8}}{V_{0.2} + V_{0.6} + V_{0.8}}$$

$$C_{sm} = \frac{V_{0.2}C_{s0.2} + V_{0.8}C_{s0.8}}{V_{0.2} + V_{0.8}} \quad \text{or} \quad C_{sm} = \frac{C_{s0.2} + C_{s0.8}}{2}$$

$$C_{sm} = \eta_1 C_{s0.6}$$

WASER



I **C**

ſ

1.1.1 Single sediment measure

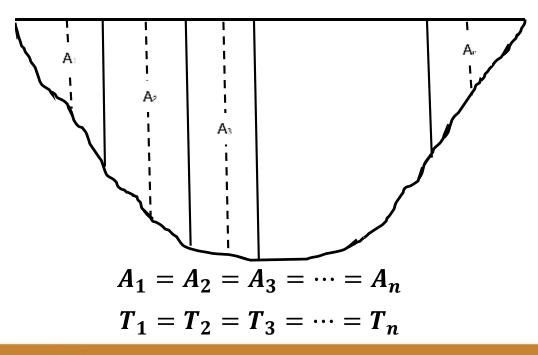
Mean sediment concentration at a cross-section (MSCC)

$$P_{s} = C_{sm1}q_{0} + \frac{c_{sm1} + c_{sm2}}{2}q_{1} + \frac{c_{sm2} + c_{sm3}}{2}q_{2} + \frac{c_{sm2} + c_{sm3}}{2}q_{2} + \frac{c_{sm2} + c_{sm3}}{2}q_{2} + \frac{c_{sm1} + c_{sm3}}{2}q_{2} + \frac{c_{sm1} + c_{sm3}}{2}q_{2} + \frac{c_{sm2} + c_{sm3}}{2}q_{2} + \frac{c_{sm3} + c_{sm3}}{2}q_{3} + \frac{c_{s$$

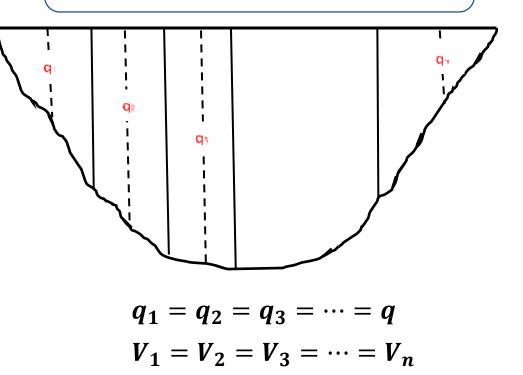
I C

Г

First died


WASER

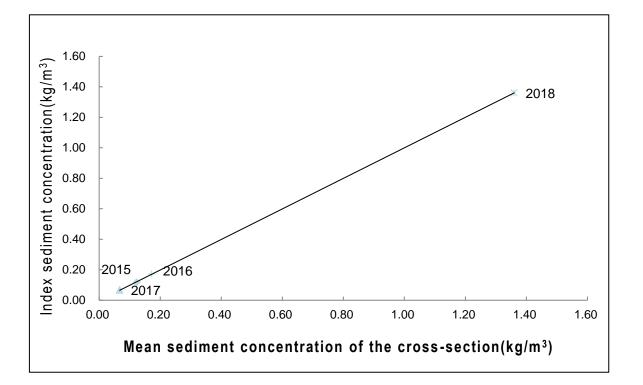
الله المعاملة معاملة المعاملة معام معاملة معاملة المعاملة المعام معاملة معاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة معاملة معام Online Webinar


1.1.1 Single sediment measure

Cross-section mixing method

Equal-segment-area crosssection mixing method

Equal-part-discharge crosssection mixing method



WASER

1.1.1 Single sediment measure

The index sediment concentration measure methods

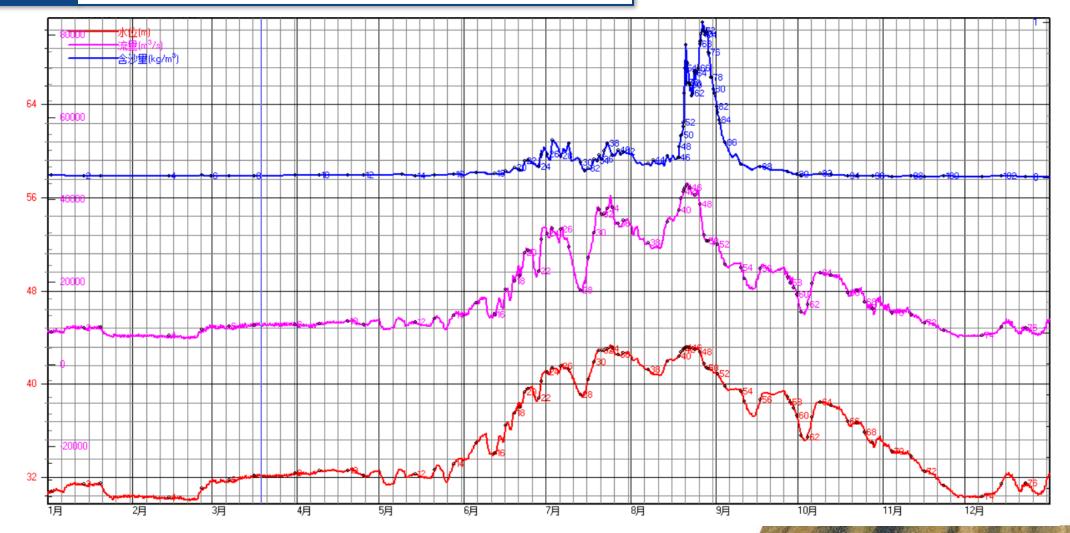
$$\overline{C_s} = f(C_{s_I})$$

Representative line method

Equal discharge multi-line method

Mainstream multi-line method

Cross line method


WASER

WASER

m

1.1.2 Measuring frequency control

WASER

1.1.2 Measuring frequency control

- When the cross-section mean sediment concentration hydrograph method is used for data processing, measurement times should be able to control the whole process of sediment concentration change.
- In the case of index and cross-section average sediment concentration relation curve method, index sediment concentration measurement should control the change process of sediment concentration, the cross-section average sediment concentration and the equivalent index sediment concentration measurement should meet the requirements of relation curve determination and control the turning point of the relation curve changing.

WASER

Online Webinar

1.1.2 Measuring frequency control

- When using the hydrograph method of index and cross-section average sediment concentration ratio to process data, the measurement times should be evenly distributed and the turning points of the proportional coefficient changing should be controlled, and should distribute measurement times at the main turning points of flow discharge and sediment concentration.
- When the flow discharge and sediment discharge relation curve method is used to process the data, the measurement times distribution should be able to control the changing process of the main flood peak, a small number of measurements should be distributed in the normal-flow and low-flow period, and the measurement numbers distribution of sediment transport rate should meet the requirements of data process and relation curve determination.

Unid Nation Education Science of

Online Webinar

- Station Daily average suspended sediment discharge Form

1.1.3 Data Process

$$Q_{s} = \frac{1}{48} \sum_{i=1}^{n} \left[\left(q_{i} c_{si} + q_{i+1} c_{s(i+1)} \right) \Delta t_{i} \right]$$

$$Q_{s} = \frac{1}{96} \sum_{i=1}^{n} \left[\left(q_{i} + q_{i+1} \right) \left(c_{si} + c_{s(i+1)} \right) \Delta t_{i} \right]$$

$$Q_{s} = \frac{1}{72} \sum_{i=1}^{n} \left[\left(q_{i} c_{si} + q_{i+1} c_{s(i+1)} \right) \Delta t_{i} \right] + \frac{1}{144} \sum_{i=1}^{n} \left[\left(q_{i} c_{s(i+1)} + q_{i+1} c_{si} \right) \Delta t_{i} \right]$$

 $W_s = Q_s T(t)$

$$M_s = \frac{W_s}{F}$$
 $y_s = \frac{V_c}{F} = \frac{W_s/\gamma'_s}{F} = \frac{M_s}{\gamma'_s}$

inth i	2818	statio	 inarvíz 	30705666		mit. B	16.4		. inites	A DOTAL	2000	180
Berth	Im	Evil	ter.	Apr	Ber	Date	fulr	Ave	Sep)	0er.	See	240
1.	0	0				. 0		133	129	16.4	6.81	1.3
1		+	16				134	240	381	36.3	6.88	1.0
3							174	149	381	17.9	0.90	1.5
4							135	128	224	11.1	16.44	4.3
8							128	139	784	-19.4	6.44	4.4
							111	101	199	26.8	5.0	1.7
7							(28	124	180	14.4	1.89	1.3
- X (111	144	101	16.1	1.5	1.11
9							HT	101	18	18.8	4.22	- 4.0
10		۰.	*				112	164	100	38,3	6.4	1.3
11							109	171	95.1	11.0	1.81	4.2
13							165	178	81.5	43.4	5.17	4.3
11		+					3.00	01	6.5	11.1	6,19	1.3
14		+				. +	104	171	11.9	10.1	6.43	1.1
13		+					101	101	46.3	4.75	6.89	1.0
10				3.00	14.1	÷	102	107	26.8	6.00	6.30	1.1
17.				1.8			10.1	1.09	21.4	9,92	4.28	4.0
18							101	100	21.4	9.97	1.10	1.0
19							16.7	itse	22.0	0.97	5.61	1.6
20						. *	35.8	124	西市	8.81	5.85	1.9
21							98.4	129	25.4	6.62	1.91	1.4
31							15.9	211	21.9	8.180	4.82	1.5
21						÷.	16.1	187	25.4	7.90	4.81	1.7
34		+					10.0	100	(0.1)	7.38	1.00	6.78
25						. *	101.	186	34.5	7.18	1.00	4.8
28	14						124	215	22.1	7.79	4.41	5.0
27							128	386	(0.7	7.18	1.16	5.4
21							127	399	(0.5	6.82	1.10	5.3
29							101	-011	10.5	6.17	1.39	4.9
- 20	+					1.4	127	441	10.5	6.11	4.24	6.1
31	. 8				1		152	215		6.67		5.8
2 4.00	*				۰.	+	100	144	41.4	11.0	1.41	4,88
1000	+	÷				+	194	495	119	18.4	4.96	1.44
" dete	4.1	÷ +	1.1	1		- 4	. 8	- 29	setter:	4.5	15	- 31
1.	tion date i		diam'r. 6	inflaturi.	121	Aug 2015	S	New year	france and a	term 2	19.	
1111	entance search 110 121 mobiles of sectores result 41.0 124											
Sets												
-												
-	auro I											tt f
	14 M											
æ.						134	Sim	E E				
		-				~ ~		M	-			
						ing i	1 m	11				

manana

1.1.3 Data Process

Classical methods for the suspended sediment data processing

Cross-section mean sediment concentration hydrograph method

Index and cross-section mean sediment concentration relation curve method

Index and cross-section mean sediment concentration ratio hydrograph method

Discharge and sediment discharge relation curve method

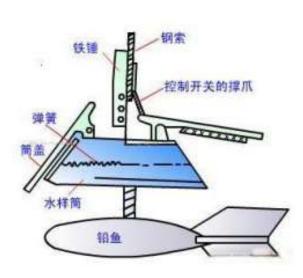
Nearby station' s index sediment correlation relation curve method

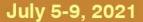
Water-sediment ratio coefficient correlation method

WASER

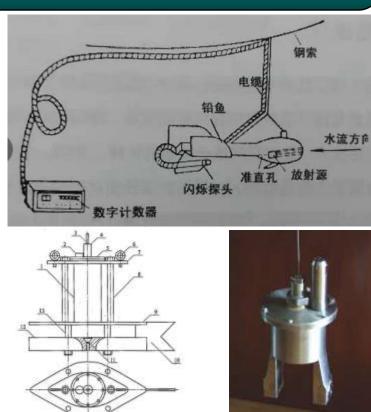
WASER

m


Time-integrated sampler


1.2 An overview of suspended sediment measuring instruments

Instantaneous sampler

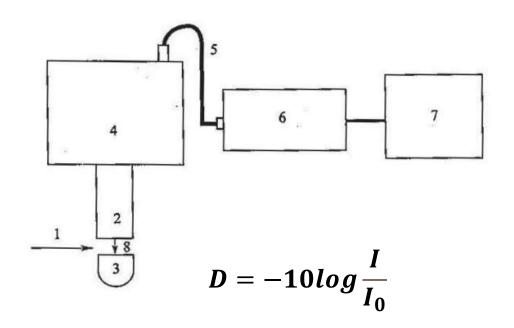

WASER

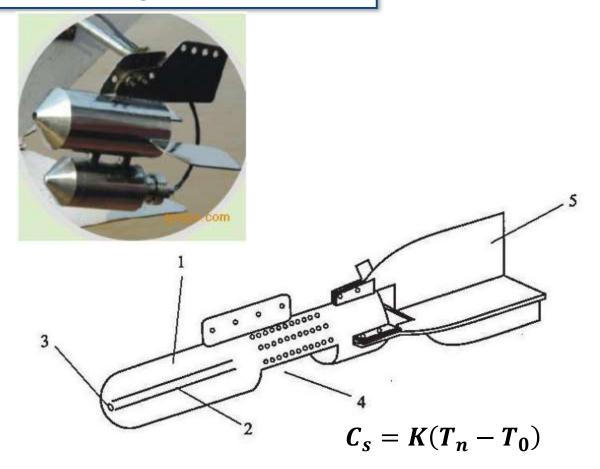
1.2 An overview of suspended sediment measuring instruments

Sediment concentration meter

Nuclear sediment meter

WASER


m


Turbidimeter

1.2 An overview of suspended sediment measuring instruments

Sediment concentration meter

Acoustic sediment concentration meter

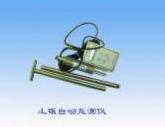
Vibrational sediment concentration meter

WASER

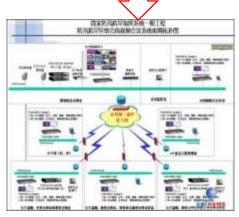
1.3 Overview of online monitoring technology

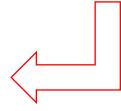
Part 02

Innovative idea of monitoring method of suspended sediment


Hydrometry

- Hydrometry 4.0
 - > 1.0 Li Bing and Son, Dujiangyan stone man
 - > 2.0 Stage and rainfall observation record (paper), semi-automatic cableway
 - > 3.0 Flood Control Command System, automatic collection, transmission and storage
 - > 4.0 Automation, intelligence, intensification, multi-dimensional (space, sky and earth integration), Internet +

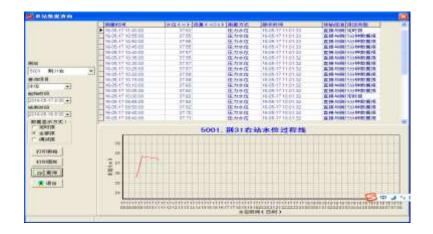


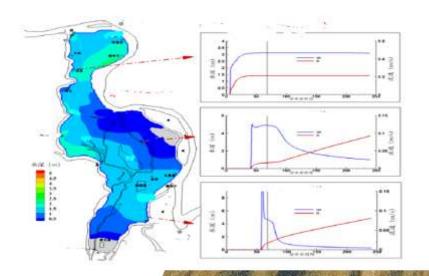

IRTCES

Online Webinar

Beijing Office 射华代表处

WASER


Hydrometry



Hydrologic monitoring for emergency response

WASER

TT

Sediment Measurement

WASER

TIT

R Lifting Office United Nations

Online Webinar

Sec. 1

	Elements	Mainstream method	Procedure of main method	Field fast measurement method using	Online monitoring method using	Measuring, reporting and processing integrated method	
	Suspended load concentration	Sampler class method	Sampling, volume measuring, settling, concentrating, oven drying, weighing, calculating	Sediment concentration meters are used in a part of stations	Seldom	Rarely	
	Suspended grain-size distribution	Sampler class method Laser particle size meter	Sampling, volume measuring, settling, concentrating, sieve analysis or water analysis or laser method analysis, calculating	Laser class meter are using in a part of stations	Rarely	Did not see	
	Soil bed load	Sampler class method	Sampling, water weighting, sieve analysis or water analysis, calculating	Some using for bulky grain Rarely for others	Experiments are carrying out on few scientific research project	Did not see	
	Pebble bed load	Sampler class method	Sampling, measuring size, weighting, drying, sieve analysis, calculating	Field measuring sizes Rarely for others	Experiments are carrying out on few stations	Did not see	
1-	Bed material	Sampler class method	Sampling, drying, measuring size, sieve analysis, calculating	Some using for bulky grain Rarely for others	Required frequency not high Did not see	Did not see	· · · ·
่งน	iy 5-9, 2021					Inications and	ROLOGY

m

2.1 Problems facing

- Development bottleneck of sediment measurement monitoring technology
- Affected by the engineering project
- Higher service requirements

2.1 Problems facing

Main innovation by Changjiang Hydrology in present century

Requirements for hydrologic service system investigation

Discharge measurement method innovation

Hydrometric management system study

Sediment measurement method innovation

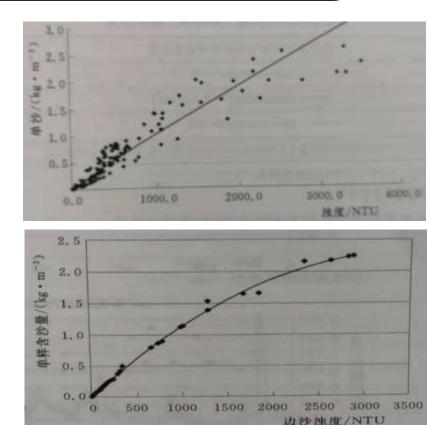
Hydrologic monitoring for emergency response and practical technology

New hydrological data processing technology

Hydrometric accuracy control technology

Adaptability of hydrometric standard

WASER



2.1 Problems facing

Sediment measurement method experiment and research

 $K = NTU_{standard} / NTU_{measure}$

WASER

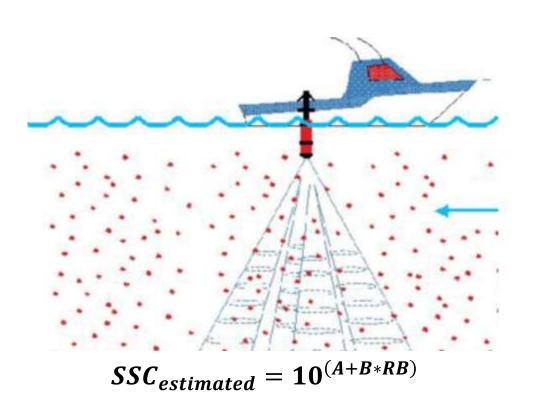
2.1 Problems facing

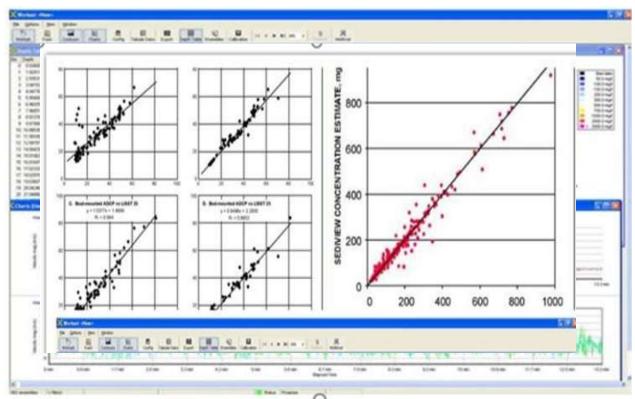
Sediment measurement method experiment and research

WASER

2.1 Problems facing

Sediment measurement method experiment and research





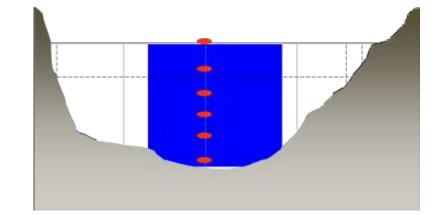
WASER

2.1 Problems facing

Sediment measurement method experiment and research

Online Webinar

2.1 Problems facing



Online Webinar

2.2 Ideas to solve problems

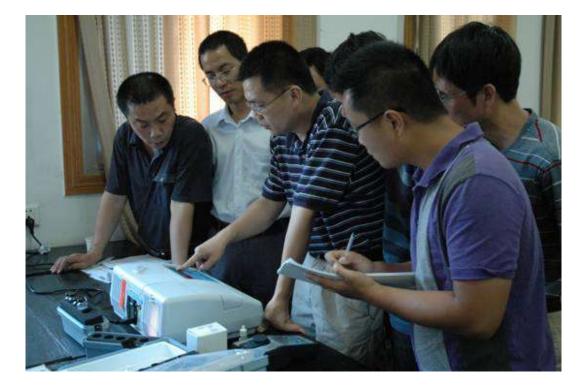
Improve and optimize classical measure methods

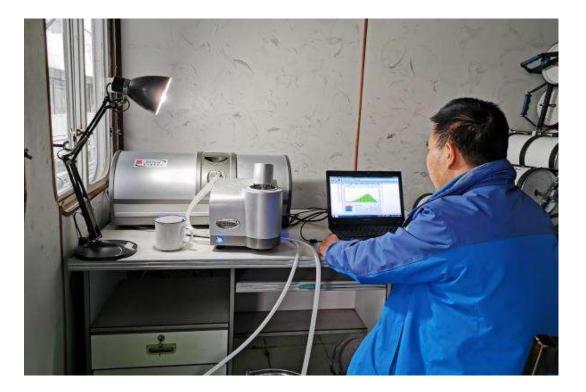
WASER

Beijing Office 私华代表处

Assuming that the water depth is 40m, six layers of water samples are taken, and the length of the sampler to travel is about: 39.5*2+40*0.8*2+40*0.6*2+40*0.4*2+40*0.2*2+2*0.5=240m

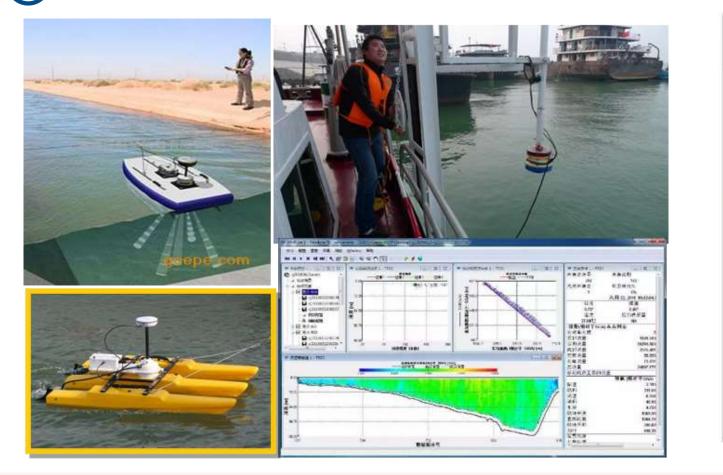
Now if we use the multi-cabins instantaneous sampler, the length of the sampler to travel is about: 39.5*2=79m

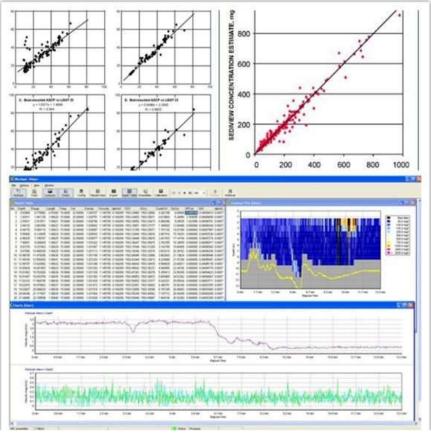

We can save about 2/3 of the time!



2.2 Ideas to solve problems

(2) Use the field sediment measuring instrument to quickly measure on site



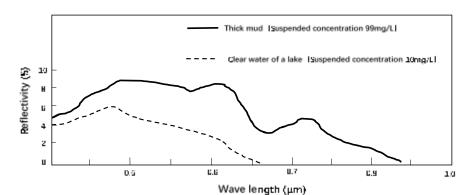


Online Webinar

2.2 Ideas to solve problems

() Scan and perceive cross-section sediment concentration directly

WASER


Unted Nations - International Rese

Beijing Office

Online Webinar

2.2 Ideas to solve problems

Remote senser Atmospheric Scattered light Vater surface reflects light Water surface reflects light Suspended materials reflects light Bottom reflects light

WASER

Measure sediment by remote-sensing technology

The incident light (including direct light of the sun and sky light) reaches the water surface, except the light directly reflected by the water, the remaining light enter into the water by refraction and transmission, most of them will be absorbed and scattered by water molecules, and will form the reflected light in water by such as scattering and reflection by the suspended material, the intensity is associated with the turbidity of the water.

Other physical or chemical methods

Part 03

On-line monitoring experiment at Zhicheng Gauging Station

WASER

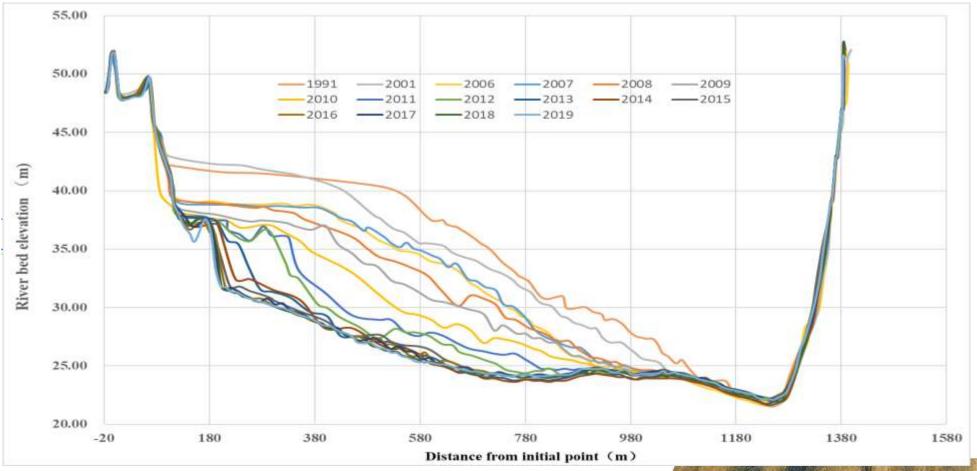
3.1 Brief introduction of Zhicheng Gauging Station

Basic information of the station

3.1 Brief introduction of Zhicheng Gauging Station

Background

- Basic production task is too heavy.
- Should report sediment information for the Three Gorges operation once a day in flood season.
- The bottleneck of automatic sediment monitoring needs to be broken through.


WASER

WASER

3.1 Brief introduction of Zhicheng Gauging Station

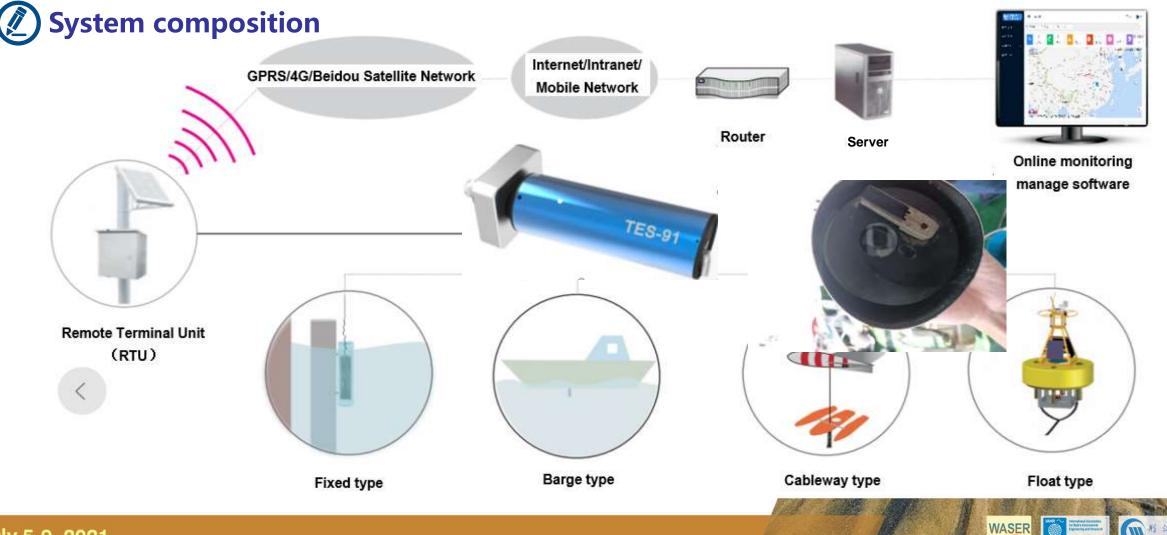
The characteristics of river reach and hydrometric cross-section

3.1 Brief introduction of Zhicheng Gauging Station

Sediment properties

0.002-1.16 kg/m³

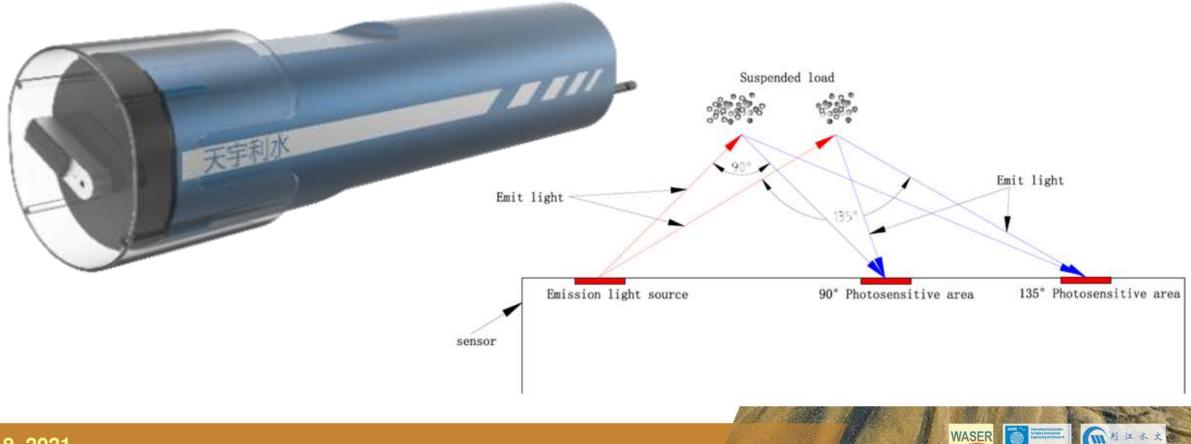
 $< 0.300 \text{ kg/m}^3$



m

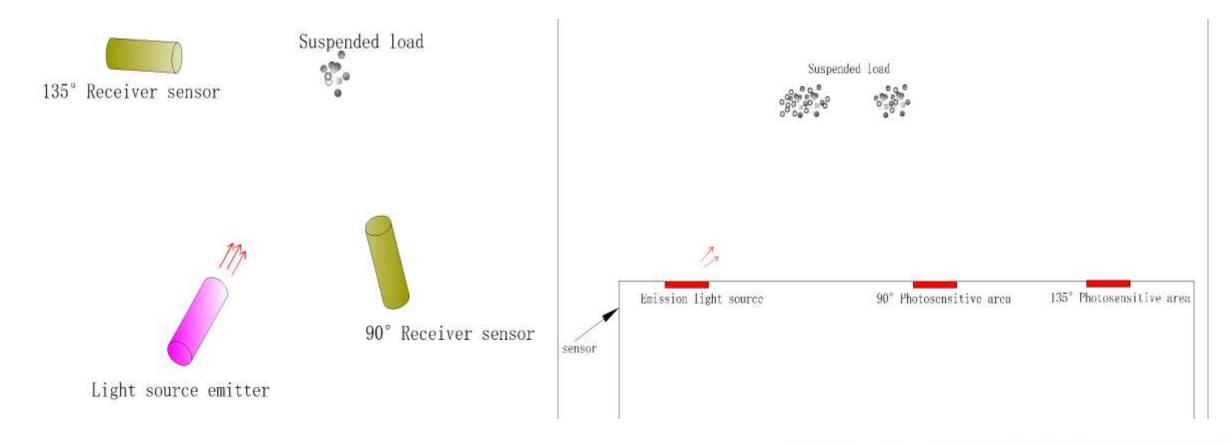
Online Webinar

3.2 TES-91 online sediment concentration monitoring system



3.2 TES-91 online sediment concentration monitoring system

Operating principle of the system



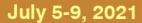
WASER

m

3.2 TES-91 online sediment concentration monitoring system

Operating principle of the system

And a state

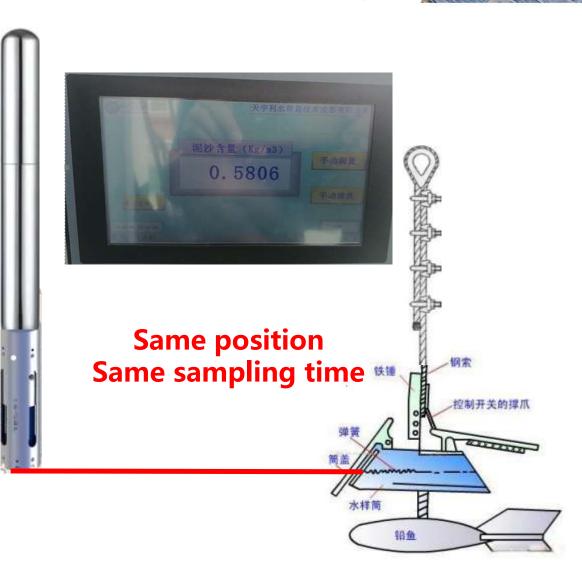

m

WASER

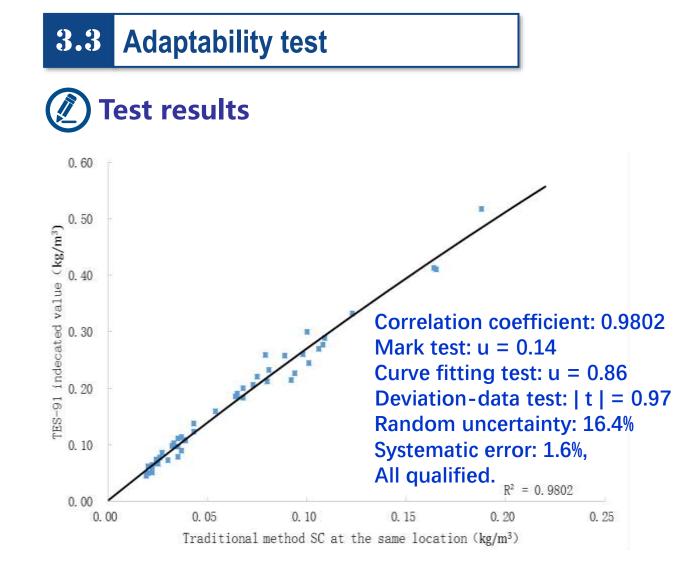
3.2 TES-91 online sediment concentration monitoring system

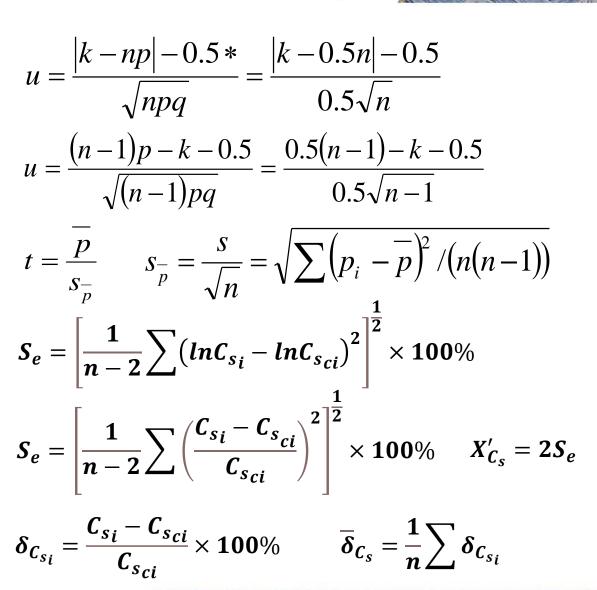
Operating principle of the system

Measuring range	0.001-120 kg/m ³		
Accuracy of measurement	5% of the reading		
The flow velocity	Less than 6.0 m/s or 19.8 ft/s		
Measure ambient temperature	0 to 55 ℃		
Main materials of sensor	Titanium alloy, sapphire, PVC, fluorine rubber and so on		
Calibrate	Multi-point calibration is performed according to sediment homogeneity		
Protection grade	IP68/NEMA6P		



3.3 Adaptability test


Test method

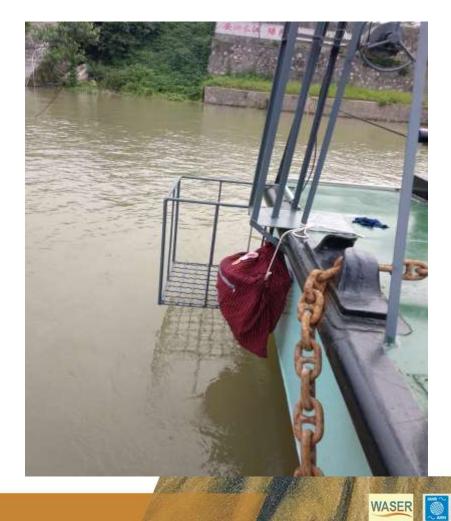


WASER

m

WASER

m


Online Webinar

3.3 Adaptability test

Some situation

m

3.3 Adaptability test

Some situation

Using lens brush to clean automatically before each measurement can effectively improve the measurement quality.

WASER

100

3.3 Adaptability test

Some situation

Floating matter affects measurement results.

Increasing the depth of the sensor can reduce the influence of floating objects.

WASER

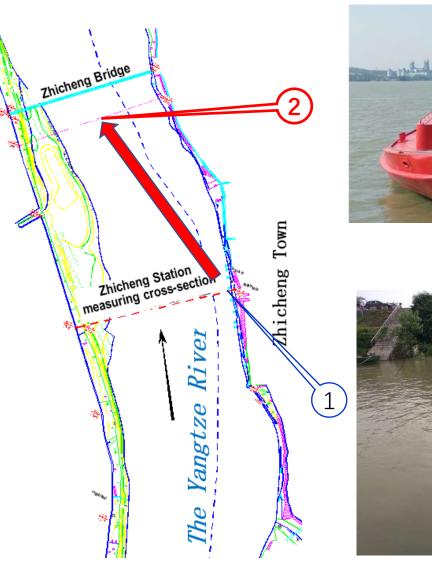

m

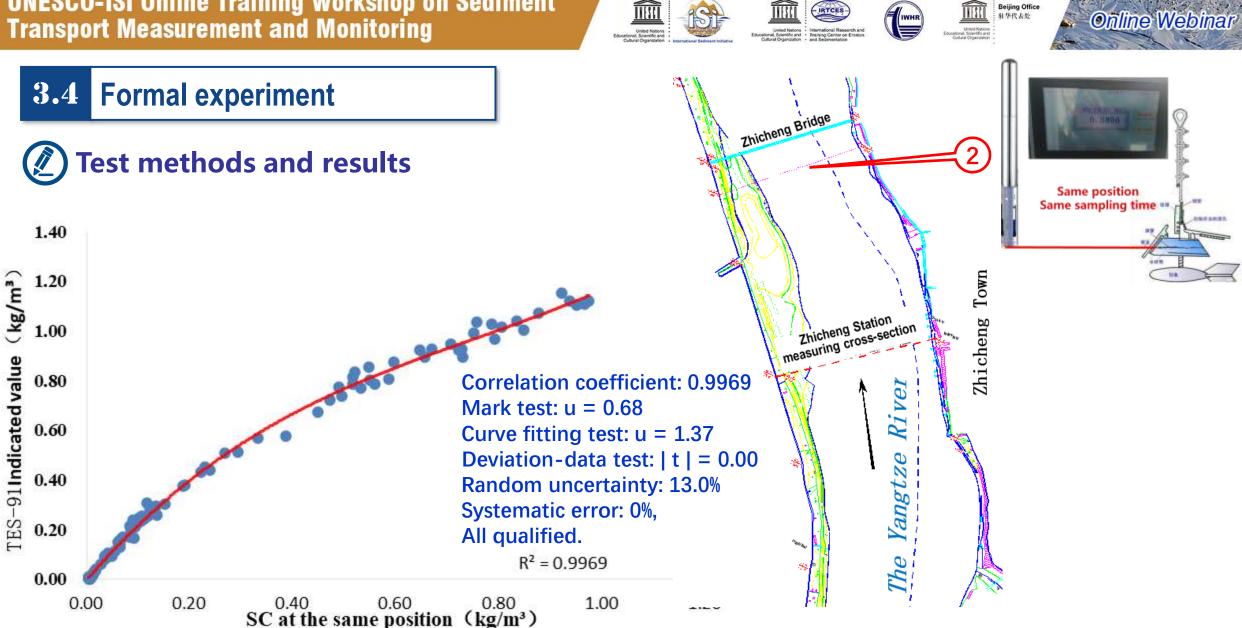
3.3 Adaptability test

Some situation

Heavy rainfall affects the sediment concentration in coastal waters, and instrument measurement results lose representativeness. The solution is to install the instrument in the mainstream away from the shore.

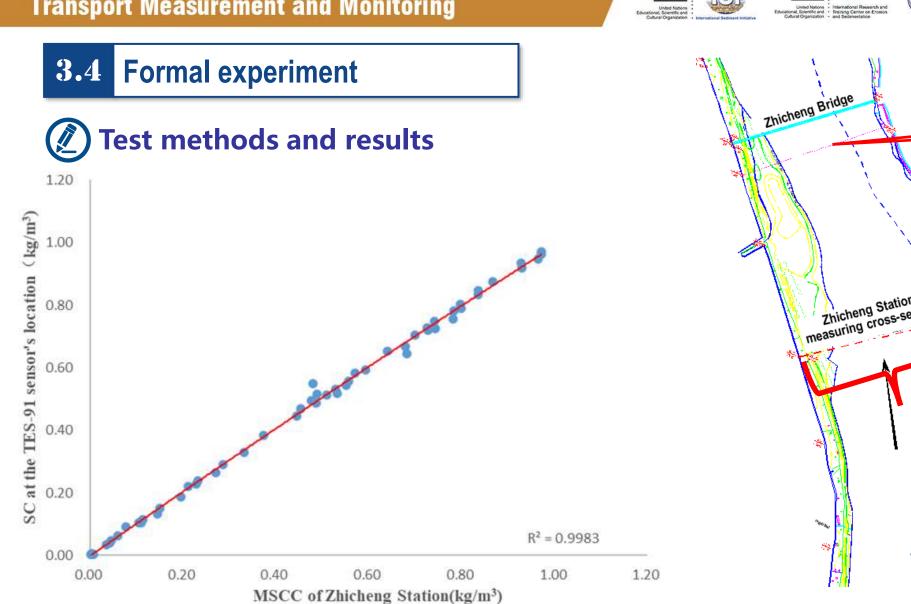
WASER

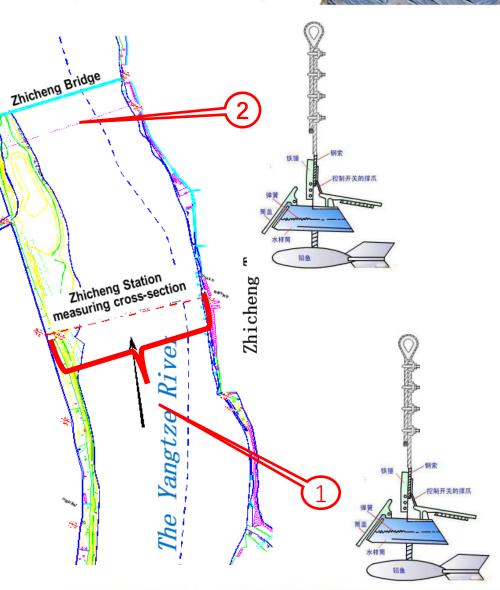

WASER


Online Webinar

3.4 Formal experiment

Instrument installation





INESCO

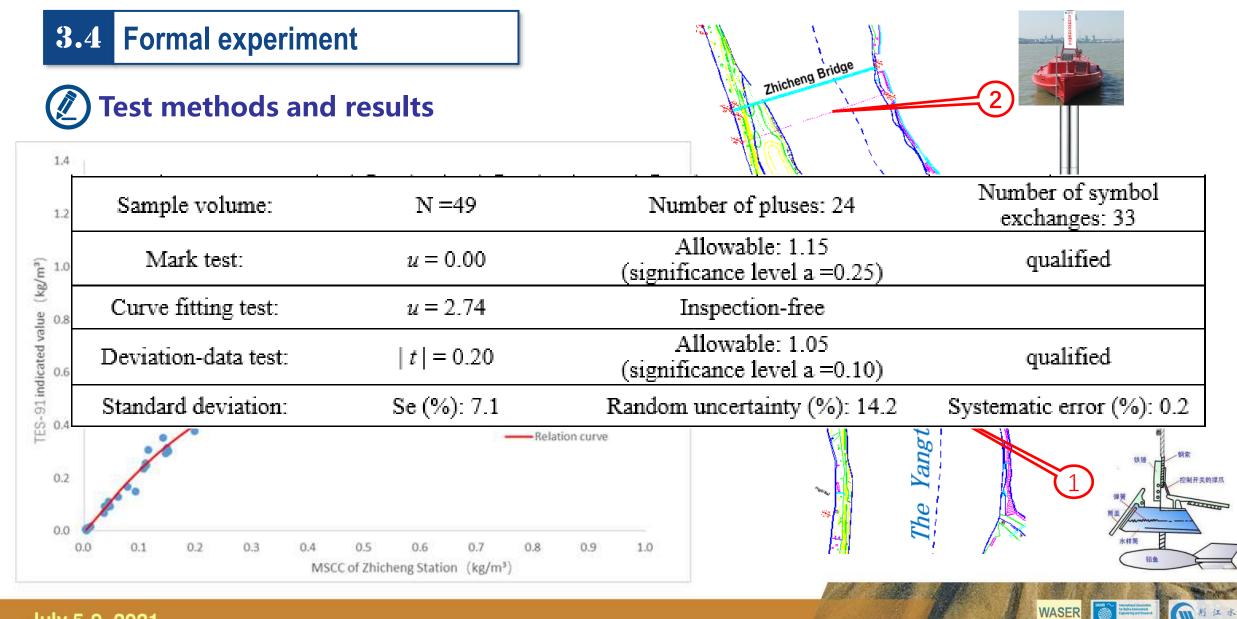
WASER

WASER

Beijing Office 驻华代表处

Online Webinar

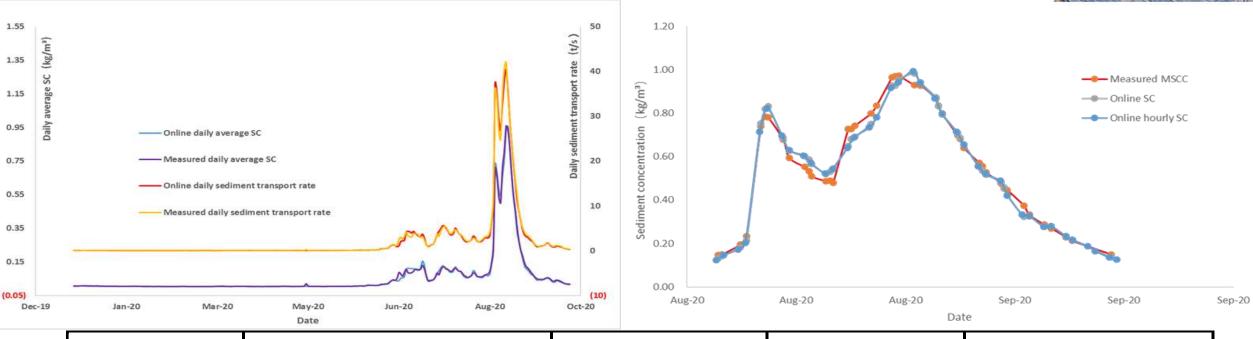
INFSCO


THESE

TIESC

IRTCES

WASER


3.5 Effect of online monitoring solution

Technical effect

Better stability and timeliness Higher quality of measuring data processing

The random uncertainty of The random uncertainty of Station classification middle and high sediment low sediment concentration concentration 20.0 24.0 1 class station 22.0 27.0 2 class station 3 class station 30.0 32.0 The allowable error can be increased by 2% if the data are compiled by other methods other than the relationship of discharge and sediment transport rate or the relationship of index SC and MSCC.

E online=f (Instrument perception error, model representativeness error, process control error, data processing error)

ILESC

THESE

United Nations Educational, Scientific and Cultural Organization

IRTCES

International Research and Training Center on Erosion Beijing Office 耻华代表处

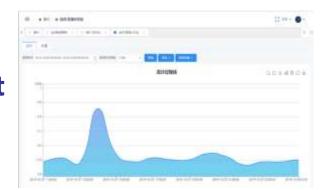
WASER

m

THESCO

Online Webinar

The processing method	Subject	Jan to May	June to September	Annual (January - September) sediment load	
Measured	Sediment load (×10 ⁴ t)	51.54	5383		
sediment concentration	Proportion %	0.9%	99.0%	5440×10 ⁴ t	
Online sediment	Sediment load (×10 ⁴ t)	50.86	5327	5380×10 ⁴ t	
concentration	Proportion %	0.9%	99.0%	5560×101	
Relative er	cror of sediment load %	- 1.3%	- 1.0%	1.1%	



3.5 Effect of online monitoring solution

Greatly emancipate manpower, improve efficiency and save cost

Measurement times comparision between covention method and online system

Method	Year	2015	2016	2017	2018	2019	2020	Average
Covention	Index SC	220	229	244	297	255	258	250.5
	MSCC	40	39	45	72	45	79	50.3
Parallel year								15-30
Online	Test gauging year							3-5

WASER IN THE ADDRESS INTO ADDRESS IN THE ADDRESS IN THE ADDRESS IN THE ADDRESS IN THE ADDRESS INTO ADDRESS ADD

Part 04

Discussion on application problems

4.1 Applicability of Zhicheng Station

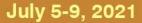
About the reliability of the scheme

Inflow and sediment source conditions stabilization		Small sediment concentration		Fine sediment particle	Suspended sediment evenly distributed	
Parallel operation for 1 year	Test ga every			the working model in time	Conventional measure when special occur	
About anvivanmental adaptability						

About environmental adaptability

Sunshine intensity had no

significant influence


Storm and heavy rain may affect representativeness

Sailing vessels affects the safety of the platform

WASER

Floating objects and suspended plants will lead to data distortion, and affect the safety of the probe

Microorganisms, algae, snail shells may reduce the data quality

4.2 Generalizability

Matching of sediment characteristics

Nominal diameter

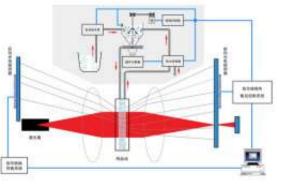
$$d = \left(\frac{6V}{\pi}\right)^{\frac{1}{3}}$$

Triaxial mean particle diameter

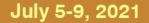
$$d=\frac{1}{3}(a+b+c)$$

Geometric mean particle diameter

$$d=\sqrt[3]{abc}$$


Sieve diameter

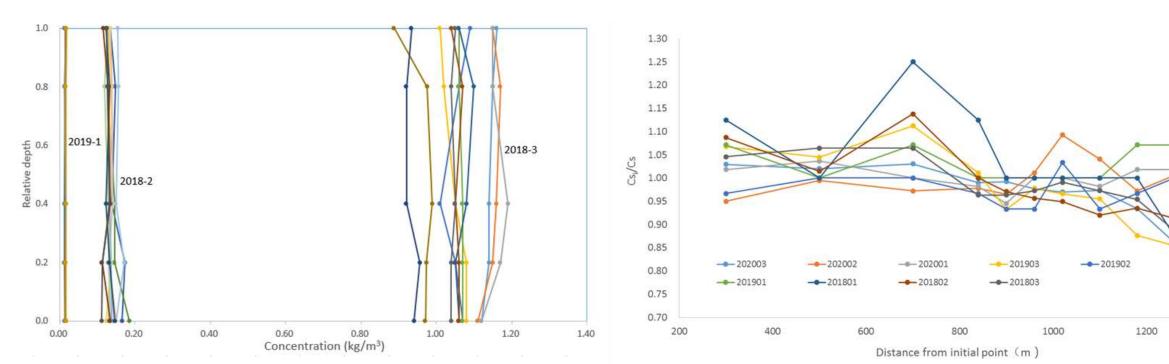
Settling diameter



Projected diameter

WASER

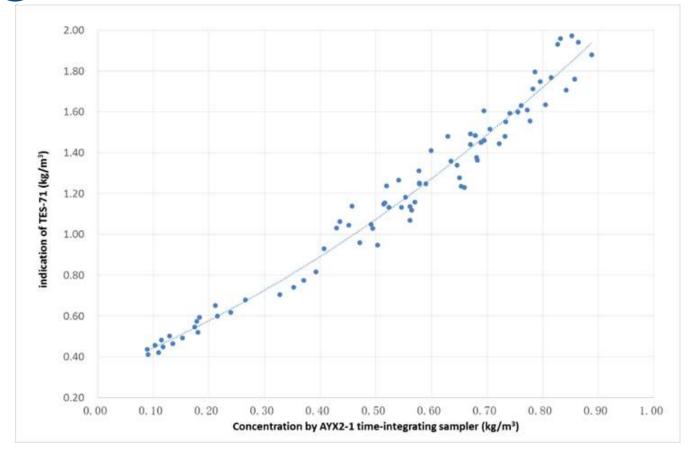
m


1400

III

WASER

4.2 Generalizability


The uneven distribution of sediment

4.2 Generalizability

Circumstances of no monitoring platform building

WASER

III

4.2 Generalizability

Other circumstances

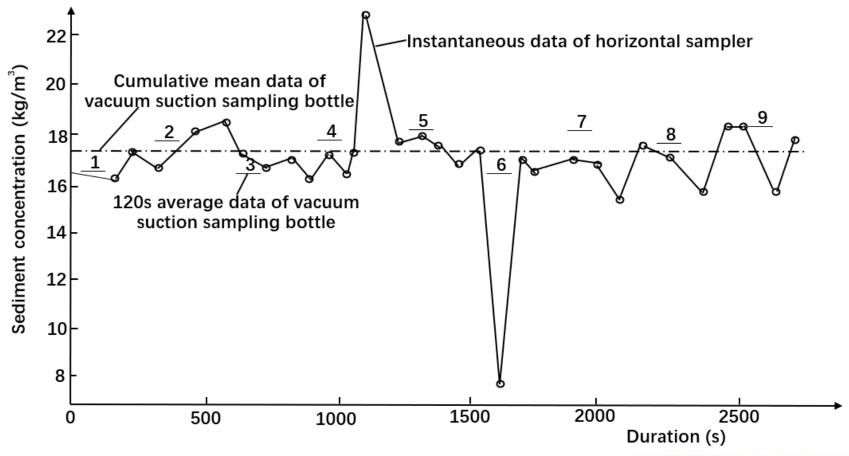
One station, one strategy!

WASER

If needs the sediment concentration distributed data along the cross-section or along the vertical line, may adopt the rapid or online monitoring mode according to the river conditions and data using requirements. The rapid monitoring method is also suitable for tour gauging or mobile non-station work, which can reduce sampling, handling, water sample treatment, sediment concentration calculation and other parts. For new hydrometric stations, rapid monitoring tests can be used first, and then on-line monitoring can be decided according to the conditions.

Need further research and technical standards

Online monitoring is a new technology. Compared with traditional methods, changes have taken place in the aspects of information perception, single sediment concentration calculation, measurement frequency control, data processing, etc. Online monitoring has tended to be integrated in the workflow, so it is necessary to summarize technical guidelines and formulate technical standards in time. Among them, when determining the allowable error index, factors such as the importance of data, the demand of data users, the possible accuracy level under realistic conditions, economy and so on should be comprehensively considered.

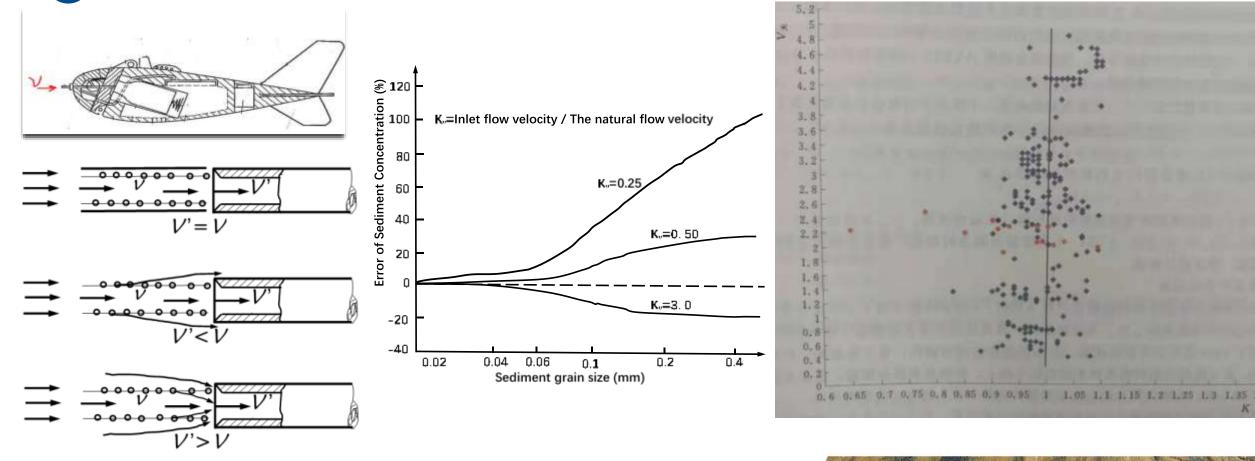


WASER

m

4.2 Generalizability

About sediment pulsation



WASER

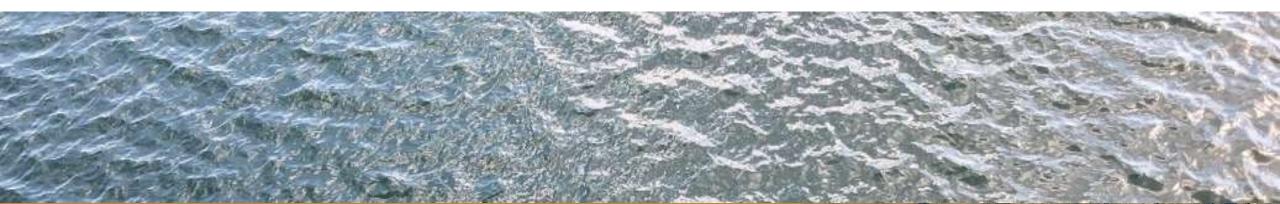
m

4.2 Generalizability

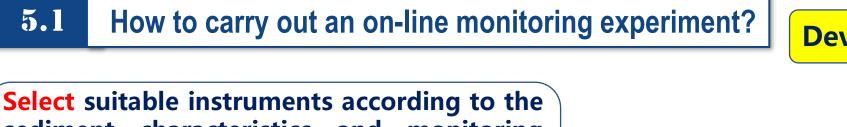
About the influence of intake flow velocity

4.2 Generalizability

Other application cases of TES-91


WASER

Part 05


Summary and outlook

Online Webinar

Develop technical standards

Select suitable instruments according to the sediment characteristics and monitoring setting of hydrometry of the river reach or cross-section, test to calibrate instrument working curve.

Select representative points (lines or areas) according to the characteristics of sediment distribution, and follow the basic technical principles of hydrometry.

Select monitoring platform scheme according to the flow conditions, comprehensive water environment, riverbed conditions and sailing conditions. Preparation of production plan, and optimize and expand the model and plan during the operation.

Implement comparative gauging with the traditional method, develop online monitoring model and inspect the model through measurement.

Select the communication scheme according to the data transmission requirements and communication conditions.

WASER

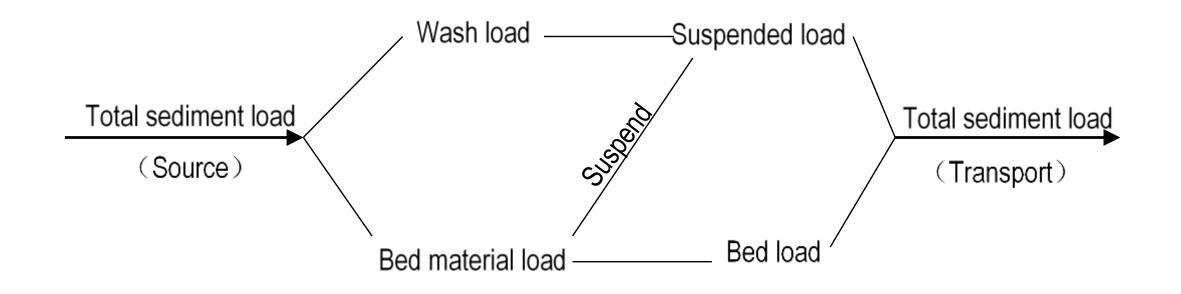
WASER

5.2 Discussions on the conditions of an on-line monitoring system

- The instrument can accurately perceive the sediment concentration and its changing process. Its stability, reliability and accuracy can meet the specification requirements and production needs, and its endurance capacity can meet the requirements of long-term online work.
- The system equipment can adapt to the work environment, effectively deal with the bad weather such as scorching sun, rainstorm, wind and waves, and can adapt to different sediment concentration, different water depth, flow velocity, water temperature, water quality and aquatic biological environment.
- The representative points (representative lines, representative areas) can be found in the measure river reach/cross-section. The measure parameters and measure frequency are controllable, and the representativeness, reliability and consistency of the data can meet the production needs.

WASER

- **5.2** Discussions on the conditions of an on-line monitoring system
- The timeliness, reliability and security of information transmission can meet certain requirements, and the shoreline station can obtain the sediment concentration data information and equipment running status information in time.
- The precision of measuring and processing can meet the requirements of relevant specifications and data using needs.
- It is helpful to improve efficiency and improve the level of science and technology. It is simple to construct, convenient and easy to use, and the economic cost is acceptable.



WASER

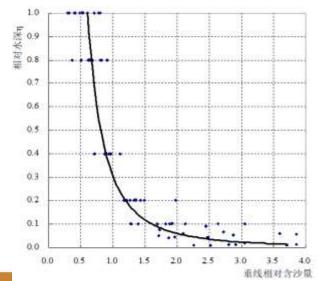
m #

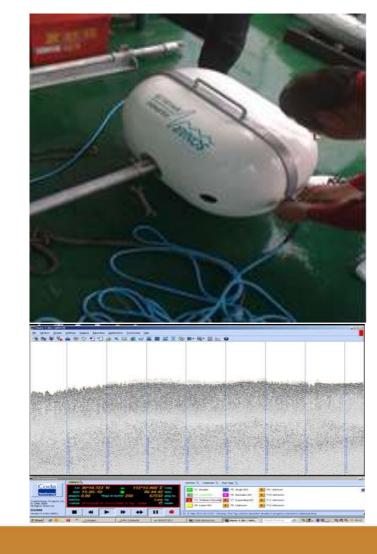
江水

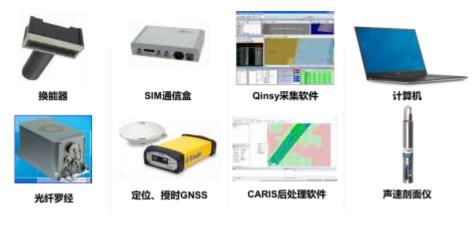
5.3 Looking forward

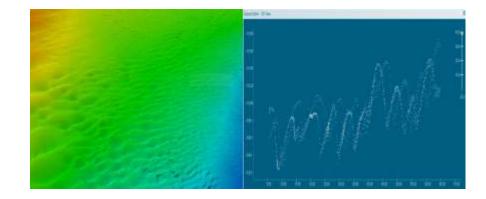
WASER

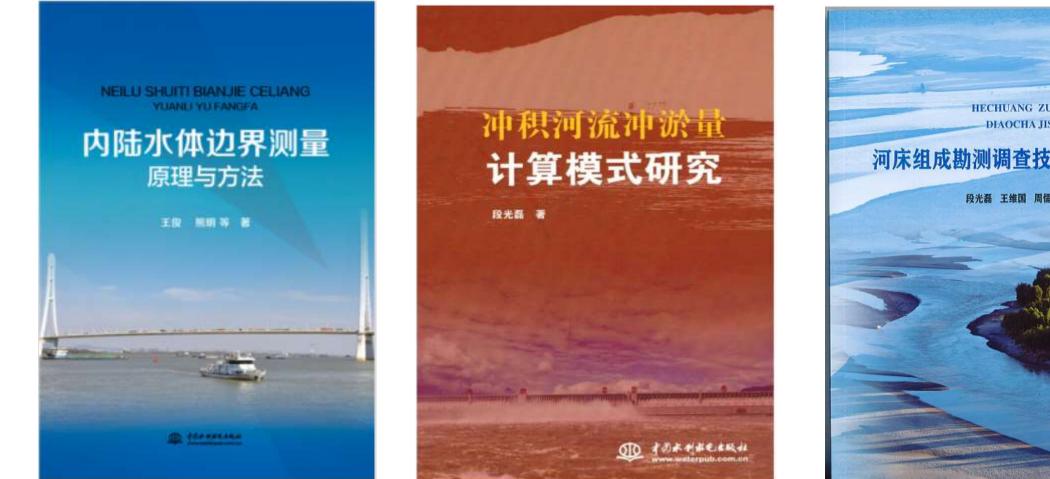
m

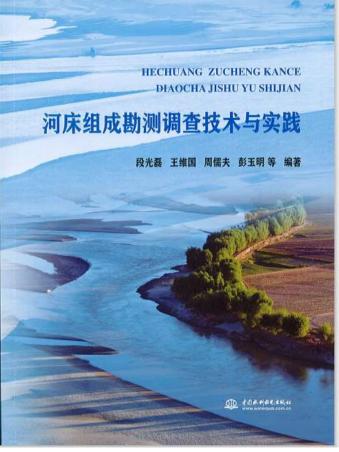

5.3 Looking forward






5.3 Looking forward





5.3 Looking forward

Thanks!

Dibing Xu, Email: jjxudb@cjh.com.cn