

International Association for Hydro-Environment Engineering and Research

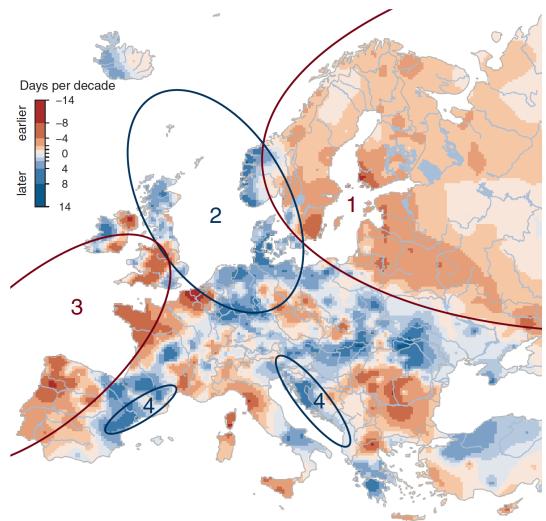
Hosted by Spain Water and IWHR, China

Impact of anthropic and climatic factors on hydrological extremes in the Italian Alps

Roberto RANZI

Department of Civil, Environmental, Architectural Engineering and Mathematics University of Brescia, IT

IAHR Technical Committee on Climate Change Adaptation, roberto.ranzi@unibs.it



Introduction

- Changes in mean annual and maximum annual daily discharge progressively arise as strongly site-dependent phenomena;
- Both climatic and anthropic factors must be considered in interpreting such changes;
- Decrease trends in annual mean values can have a dramatic impact on freshwater demand sustainability and flood and precipitation extremes raise the concern of the public, media and experts;
- The climatic signal at annual and monthly scale is generally weak, so that series' length and quality are crucial in order to obtain reliable results.
- As anthropic drivers *effects of reservoirs* and *land use changes* have been considered for large space and time scales

Impact of Global Warming on the water cycle (1): Flood timing

Fig. 1. Observed trends of river flood timing in Europe, 1960–2010. The color scale indicates earlier or later floods (days per decade). Regions with distinct drivers: Region 1, northeastern Europe (earlier snow-melt); region 2, North Sea (later winter storms); region 3, western Europe along the Atlantic coast (earlier soil moisture maximum); region 4, parts of the Mediterranean coast (stronger Atlantic influence in winter).

Bloeschl et al., Science, DOI: 10.1126/science.aan2506, 2017

Impact of Global Warming on the water cycle (2): Flood intensity

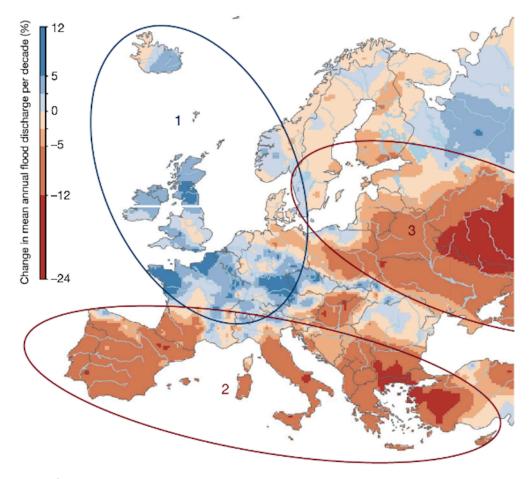


Fig. 1 | Observed regional trends of river flood discharges in Europe (1960–2010). Blue indicates increasing flood discharges and red denotes decreasing flood discharges (in per cent change of the mean annual flood discharge per decade). Numbers 1–3 indicate regions with distinct drivers. 1, Northwestern Europe: increasing rainfall and soil moisture. 2, Southern Europe: decreasing rainfall and increasing evaporation. 3, Eastern Europe: decreasing and earlier snowmelt. The trends are based on data from n = 2,370 hydrometric stations. For uncertainties see Extended Data Fig. 2b.

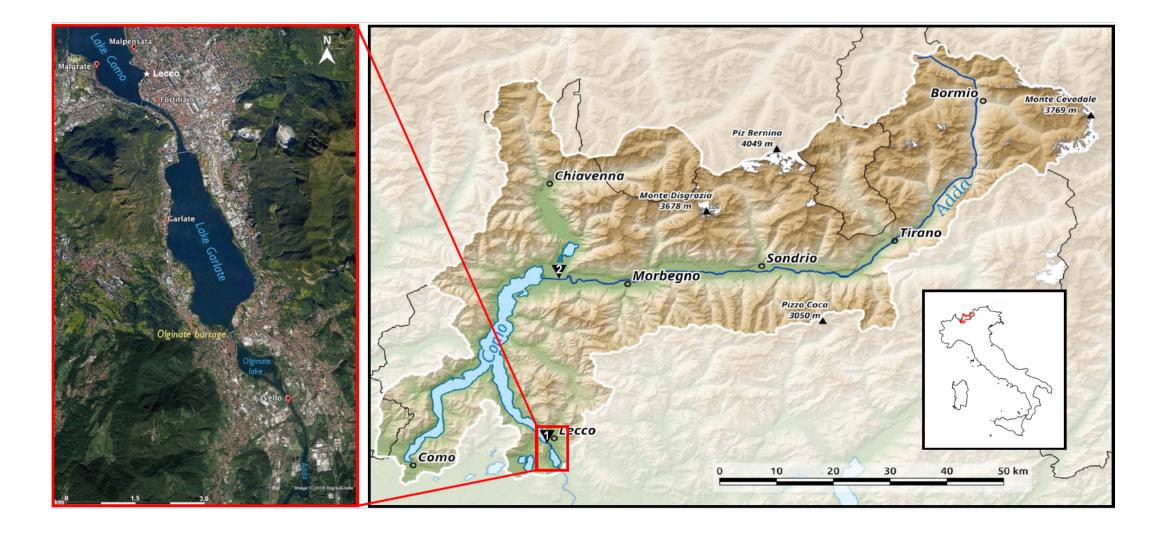
Bloeschl et al., Nature, <u>https://doi.org/10.1038/s41586-019-1495-6</u>, 2019

Study area: Central Alps

TOTAL INVESTIGATED AREA: 19,400 km²

CONFLICTING EXPLOITATION OF FRESHWATER: irrigation, industrial, hydropower generation

SEASONAL REGULATION: total regulation volume in the area


 $\sim 2.3 \ 10^9 \ m^3$

River-flow data availability: annual and daily data

Watershed	Adige	Mincio Chiese		Oglio	Adda	
Rivergauge station	Trento	Monzambano	Gavardo	Sarnico	Lecco	
Area [km²]	9763	2350	934	1840	4508	
Maximum elevation [m a.s.l.]	3899	3556	3462	3554	4050	
Average elevation [m a.s.l.]	1735	966	1230	1429	1569	
Minimum elevation [m a.s.l.]	186	60	198	154	197	
Observation period	1862-2011	1950-2011	1934-2018	1933-2011	1845-2016	
Sample size	150	62	72	79	172	
Mean annual volume [mm]	708	709	1091	979	1151	

Adda River in Lecco (4508 km²)

Quality control of river-flow data

Data inconsistency, heterogeneity, anthropogenic regulations were checked by intercomparing long term time series e.g. the 172 years of Adda river

PANGAEA.

Data Publisher for Earth & Environmental Science

Ranzi, Roberto; Michailidi, Eleni Maria; Tomirotti, Massimo; Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio (2020): Multi-century (1800-2016) meteo-hydrological series for the Adda river basin (Central Alps). PANGAEA, I thtps://doi.org/10.1594/PANGAEA.919890

Always quote citation above when using data! You can download the citation in several formats below.

	RIS Citation B	BTEX Citation 🗳 Copy Citation	C Facebook C Twitter	Show Map Google Earth
GRDC Da	ta Download			
A Home	Download by Subregion	O Download by Station	Download GRDC Station Catalog	gue
	able			D. A. SHE
	+	MAN LAND		Como Etba
2 / 10,064	- Naturale Sasso Malascarpa	Lecco Zona Industria di Lecco	nin la	
Stations	Magouria Angel	Valmadrera Majorate	SS36	31/12/1844 🗰 - 31/12/2016 👹
Clear filter	S ZA LAW SEL	LAKE COMO	OUTLET (SYNTHETIQUE) 634	48610
Station Name or Number	at - Participal and a	River:	ADDA, FIUME	
Q Search	SP039	Parco Daily Start: del Monte Barro S Daily End:	1845 2016	
	The second	Daily Missing (%):	0	· · · · · · · · · · · · · · · · · · ·
Water Body Name	Civate	Monthly Start:		
ADDA, FIUME (2)		Monthly End: Monthly Barro Monthly Missing (96).	
Eind by alternative namer		2 250		
	IIA	200 - 200 - 200 - 200 - 200 - 200		and the state of the second
	Time F	150		
		20 cullet the transfer	d tudio of tud the difference do to to.	
		01/01/1856 01/01/1868 01	1/01/1880 01/01/1892 01/01/1904 01/01/1916 01/01/1928 0	1/01/1940 01/01/1952 01/01/1964 01/01/1976 01/01/1988 01/01/2000 01/01/2012
		Global Runoff Data Centre Generated at: 26/13	- LAKE COMO OUTLET (SYNTHETIQUE) / Q./ Monthly M	ean incl. data calculated from daily data

CONTACT

ABOUT

Ranzi et al., J of Climatology, 2021 Global Runoff Data Center portal.grdc.bafg.de

Analysis methodology

Individual series analysis: *k*=1, ..., N

$$m_k = median\left(s_{kij} = \frac{x_{kj} - x_{ik}}{t_j - t_i}; 1 \le i < j \le n_k\right)$$

$$q_k = median(x_{ki} - m_k t_i; 1 \le i \le n_k)$$

 $x_k = m_k t + q_k$

Advantages:

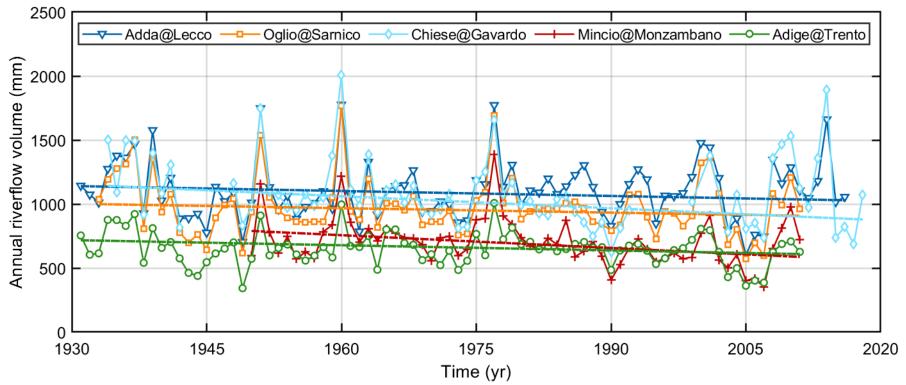
- they are more robust when outliers are present;
- they are comparable to least squares estimators in terms of standard error according to hypotheses of normality and homoscedasticity of the dependent variable, but they are superior according to the hypothesis of normality (when used on its own);
- confidence boundaries for regression line slopes can straightforwardly be derived.

Analysis methodology

Pool analysis: k=1, ..., N with $N \ge 2$

$$m_{p} = \frac{\sum_{k=1}^{N} \sum_{i=1}^{n_{k}} (t_{i} - \hat{t_{k}}) x_{ki}}{\sum_{k=1}^{N} \sum_{i=1}^{n_{k}} (t_{i} - \hat{t_{k}})^{2}}, where \ \hat{t_{k}} = \sum_{i=1}^{n_{k}} \frac{t_{i}}{n_{k}}$$

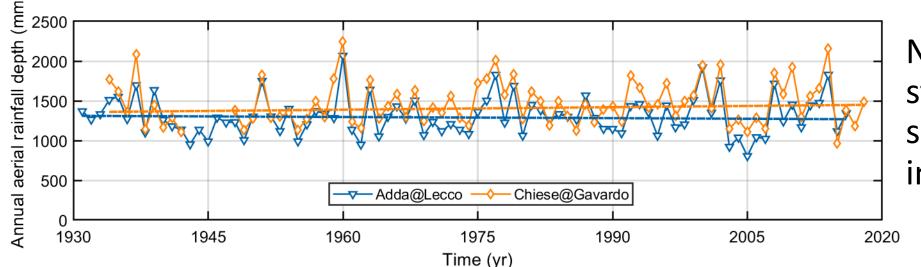
Sen-Adichie test for parallelism hypothesis $H_0: m_1 = \dots = m_N = m_p$


Advantages:

- more robust estimate relying on a large sample size;
- if the parallelism hypothesis cannot be rejected, pool slope m_p, can be interpreted as a regional trend estimate.

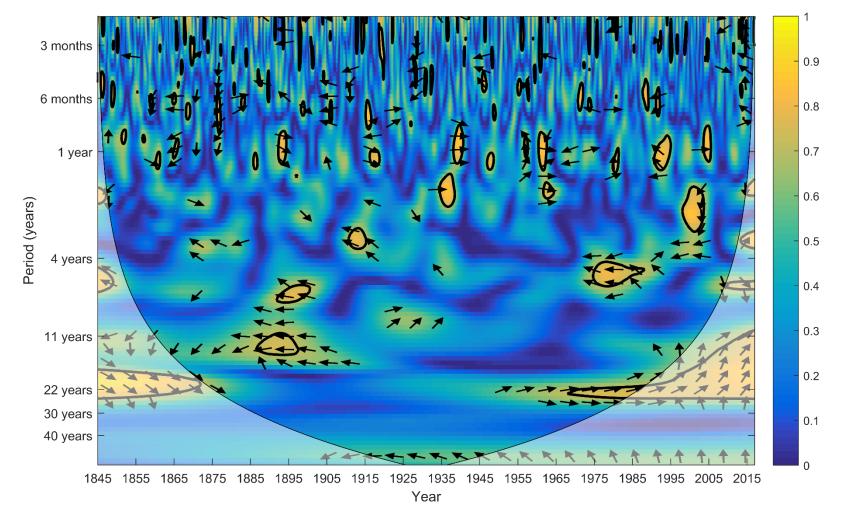
Results: river-flows

Watershed	m _k	m _{kl}	m _{ku}	α_{0k}	$ au_{\mathbf{k}}$	α_{tk}	ρ_k	$\alpha_{\sf rk}$	m _p	α_{p}	$lpha_{\sf pk}$
watershea	(mm/yr)	(mm/yr)	(mm/yr)	(%)	-	(%)	-	(%)	(mm/yr)	(%)	(%)
Adige	-1.34	-1.75	-0.98	<0.1	-0.30	<0.1	-0.46	<0.1		54.8	66.2
Mincio	-3.33	-5.00	-1.28	0.5	-0.24	0.6	-0.32	1.0	-1.45		15.8
Chiese	-3.12	-5.02	-1.10	0.8	-0.21	0.8	-0.28	1.6			16.2
Oglio	-1.16	-2.91	0.56	32.2	-0.08	32.4	-0.11	32.8			71.3
Adda	-1.29	-1.85	-0.70	<0.1	-0.19	<0.1	-0.27	<0.1			62.2

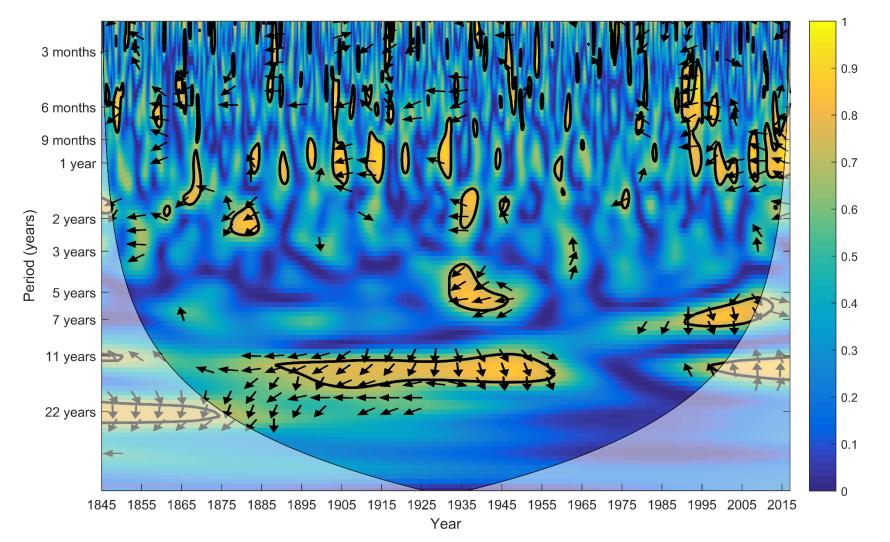

 α_{0k} Theil test for null slope $\alpha_{\tau k}$ Mann-Kendall test $\alpha_{\tau k}$ Spearman test $\alpha_{\rho k}$ Spearman test α_{ρ} Sen-Adichie test α_{ρ} Theil test for m_{ρ} slope lower-upper limits symmetric 5-95% percentiles

Discussion (1-effect of climate)

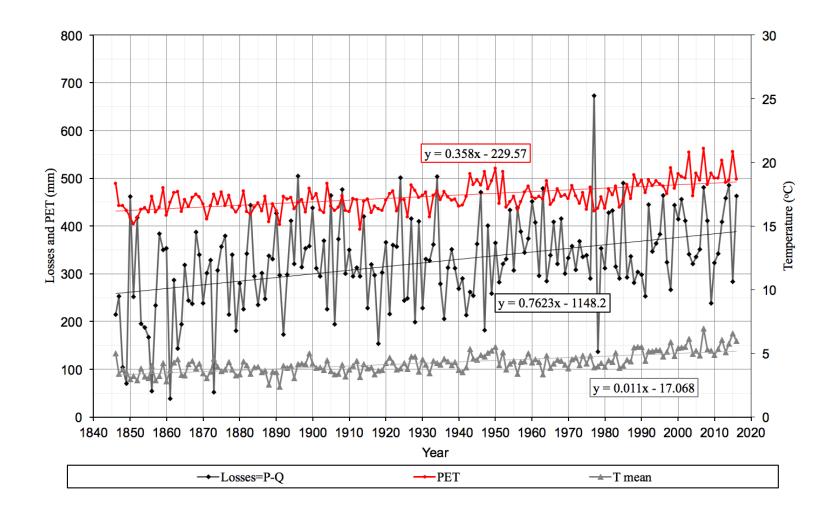
Potential reasons for a regional statistically significant river-flow decline:


- Storage in glaciers
- Decrease in mean-aerial annual rainfall depths

Increase in hydrologic losses (evapotranspiration)

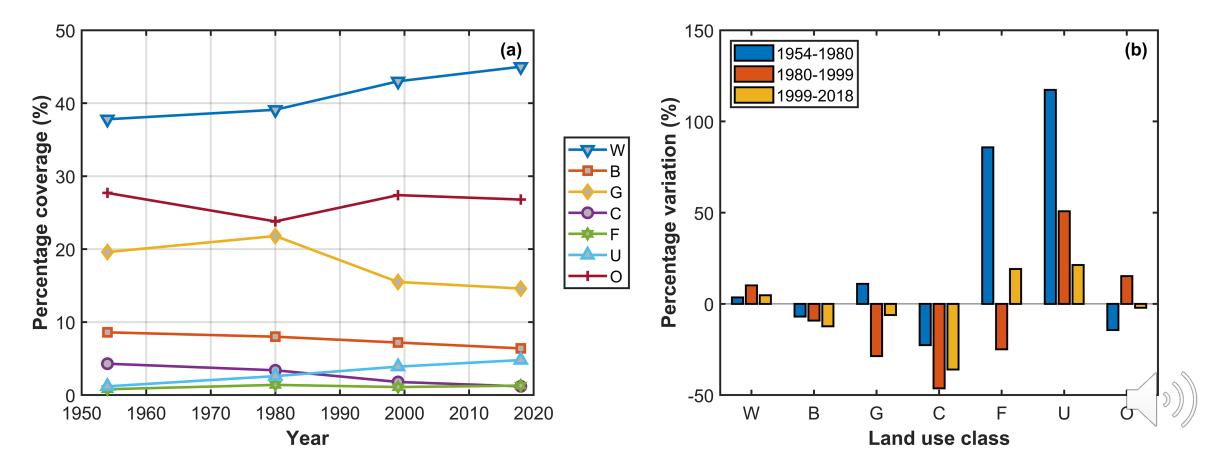


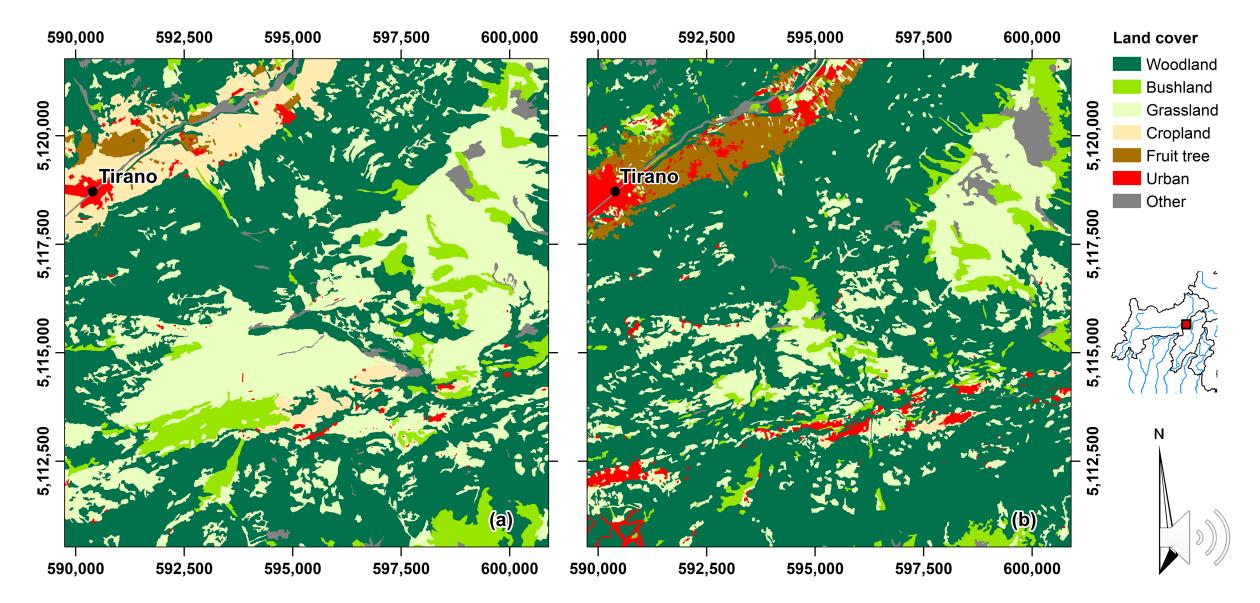
No evidence of a statistically significant decrease in annual rainfall The climatic signal at annual and monthly scale is generally weak: teleconnections with wavelet transform


Wavelet cross coherence between sunsposts (Zanchetti et al., 2008 for the Po river) and precipitation does not indicate significant coherence

Instead some coherence with North Atlantic Oscillation at 11-15 years scale is observed

Discussion 2 -ncrease in hydrologic losses (evapotranspiration) due to afforestation


Already shown for the Adda riverbasin (Ranzi et al., JOC, 2021) where PET is however less than observed Losses=P-Q


Afforestation as a concomitant cause

Land cover analysis 1954, 1980, 1999 and 2018 (Lombardy Region).

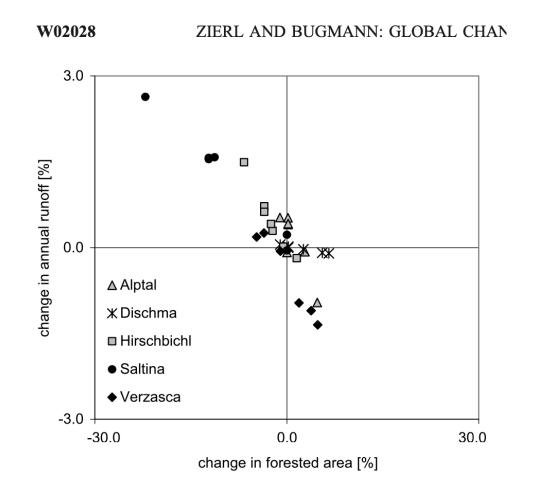
Woodland (W), Bushland (B), Grassland (G), Cropland (C), Fruit trees (F), Urban (U), Other (O).

Afforestation example (1954 vs 2018)

Land use changes likely cause of increased ET=P-Q losses

	Area (km2)							
	1954	1980	1999	2018				
Bushland	602.1	559.7	508.0	445.7				
Cropland	304.2	235.5	126.5	81.0				
Fruit trees	54.3	100.9	75.8	90.2				
Grassland	1376.5	1527.7	1090.6	1023.7				
Other	1946.7	1668.3	1921.3	1880.9				
Urban	84.4	183.4	276.6	335.6				
Woodland	2650.3	2742.9	3019.5	3161.6				
Total	7018.4	7018.5	7018.2	7018.9				

Afforestation


Zierl and Bugmann (WRR, 2005)

showed after simulations and Gurtz

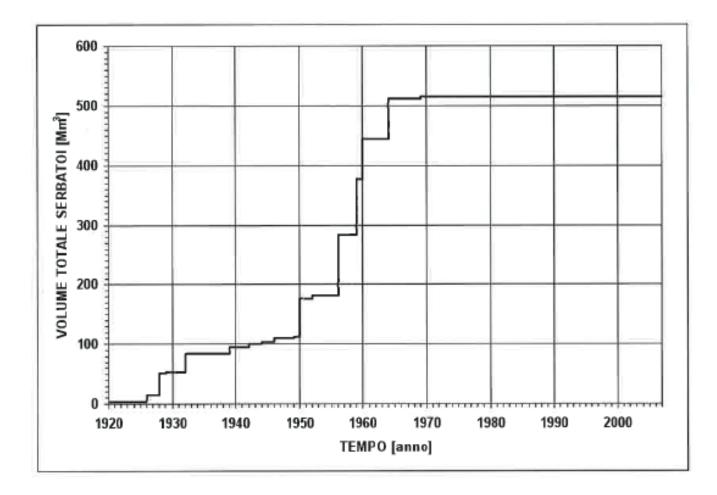
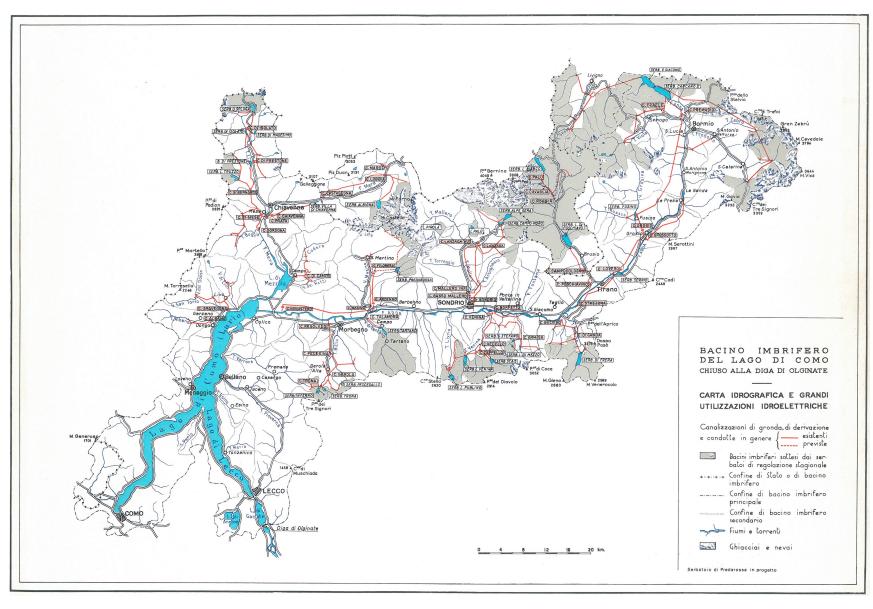
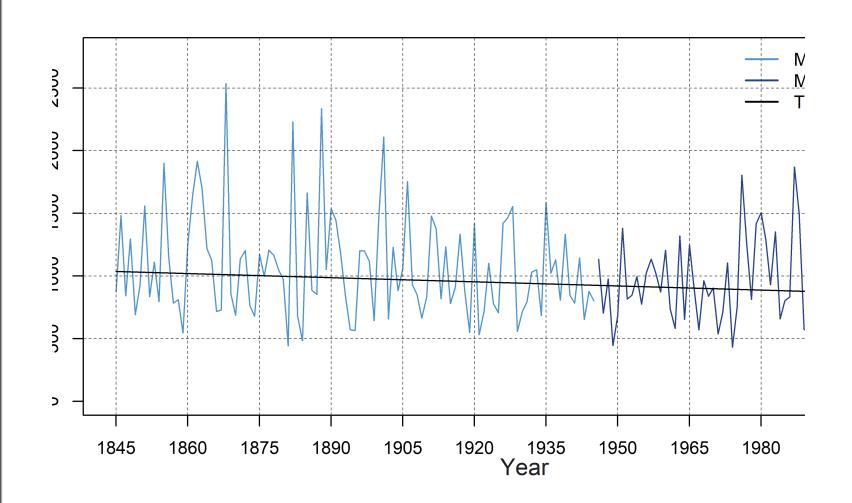
et al. (HP, 1999) also with data on

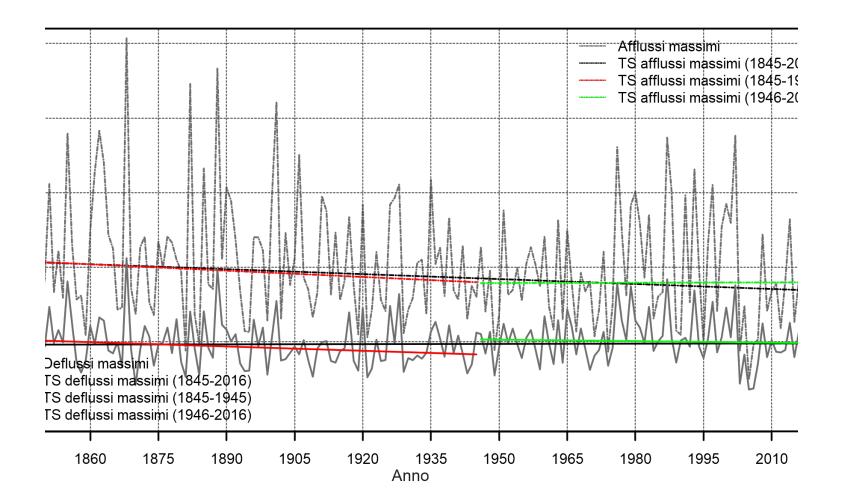
the Swiss Alps how forested areas

decrease annual runoff

Figure 5. Relative change in annual runoff (%) comparing time slice 1 (1980 to 2000) and time slice 6 (2080 to 2100) for each of the seven scenarios used in this study depending on changes in forested area. Different symbols indicate the different case study areas.

Discussion (3-effect of reservoirs upstream and Lake's management downstream)


Fig. 3 Crescita del volume totale dei serbatoi alpini stagionali nel bacino dell'Adda prelacuale

Discussion (3-effect of reservoirs and Lake's management)

Annual maxima of daily inflow show a decline with Z_{MannK}=-1.86, very close to the 5% significance limit

...but annual maxima of daily outflow are constant because of a combination of the effect of upstream reservoirs and lake's regulation

The Olginate dam at the Como Lake's outlet increases the discharge capacity, with a final neutral effect on extremes

Conclusions

- New data series collected confirm results of previous studies for the Italian Alps indicating a stationarity of annual rainfall and a significant decrease of runoff, about -1.45 mm/year at regional scale
- Increased hydrological losses can be attributed to both climate warming but also to expanded forested areas enhancing evapotranspiration losses.
- Weak teleconnection with sunspot and AMO signals is observed
- Land use changes monitored at 7000 km² scale indicate a 20% increase of woodland corresponding to +500 km². They can be one of the reasons of the decrease of flood extremes together with reservoirs upstream Lake Como
- However Lake's regulation with Olginate dam is the reason of a neutral effect on the trend of outflow extremes

