
104

Within the UK and worldwide water industry, 
pipe bursts/leaks and other similar failure 
events are recognised as high priority issues. 
These events cause economic losses to the 
water companies, represent an environmental 
issue and have a negative impact on the water 
companies’ operational performance, customer 
service and reputation. Water companies 
currently allocate a vast amount of resources to 
manage these events, but with limited success. 
The largest barriers to progress in the UK are 
the complexity of Water Distribution Systems 
(WDSs), ageing water supply infrastructure and 
unknown/unknowable condition of assets 
which make these events impossible to 
eliminate/avoid completely. In their day-to-day 
operations, water companies are tasked with 
operating their WDSs optimally to minimise 
costs and meet the required standards of 
service and, therefore, also managing contin-
gency situations when events occur. In this 
scenario, an efficient event management 
process provides opportunities to improve the 
situation (e.g. by reducing the number/ duration 
of supply interruptions, conserving water and 
reducing the overall carbon footprint). 
 
Event management in WDSs can be divided 
into three principal stages[1]: 1) event detection, 
2) event location and 3) event response. The 
first two stages involve detecting and localising 
the event in the network and raising the 
relevant alarm. The third stage is associated 
with the decisions and actions required to 
reduce and, ultimately, eliminate the negative 
impact of the event on the water company and 
its customers.  

In the last decade the importance of a 
proactive approach to event management, 
supported by near real-time assets monitoring, 
has become apparent as water companies in 
the UK have had to deal with tightening 
regulatory and budgetary constraints. 
Instrumentation, data gathering and communi-
cation technologies have also improved over 
the years and become less expensive to own 
and operate. As a result, a vast array of 
pressure and flow data originating from the 
many District Metered Areas (DMAs) that 
typically form a UK WDS is now frequently 
available and expected to quickly grow over 
time (especially data from pressure sensors, 
because of their lower cost and easier instal-
lation and maintenance when compared to 
flow sensors). The flow is nowadays typically 
measured at the DMA entry and exit points to 
allow the volume of water consumed in each 
DMA to be tracked over time and pressure is 
measured at a limited number of DMA critical 
monitoring points to ensure adequate pressure 
at the customers’ taps.  
 
The above monitored data can give insights 
into the operation and current/future status of 
WDSs (including pipe bursts/leaks and other 
similar events), especially when coupled with 
suitable data driven techniques. Advances in 
these techniques utilising advanced statistical 
tools, Machine Learning (ML) and Artificial 
Intelligence (AI) have led to the development 
of pioneering techniques that automatically 
manage and analyse increasing numbers of 
near real-time data streams aiming at enabling 
the detection[2-6], approximate location[7-9] and 

response[10,11] to pipe bursts/leaks and other 
similar network events. These techniques are 
very promising for alerting the water company 
personnel as soon as an event occurs, guide 
them to the problem area (i.e. for narrowing 
down the event search area within a DMA) and 
for supporting the control room operators in 
the identification of a suitable strategy to 
respond to those events in near real-time. This 
is mainly because they automate the mundane 
tasks involved in the data analysis process, 
provide more consistent analysis of the data 
and because they can efficiently deal with the 
vast amount of, and often imperfect, sensor 
data collected by modern supervisory control 
and data acquisition (SCADA) systems and 
extract information useful in making reliable 
operational decisions. 
 
United Utilities has had a longstanding 
relationship with some of the, water systems 
engineering and hydroinformatics, leading UK 
Universities and in recent years has initiated a 
number of collaborative innovation projects 
with them. In some cases, these collaborations 
have taken advantage of programmes such as 
STREAM (the Industrial Doctoral Centre for the 
Water Sector - http://www.stream-idc.net) and 
WISE (Water Informatics: Science and 
Engineering Centre for Doctoral Training - 
http://wisecdt.org.uk) that are partially funded 
by the Engineering and Physical Sciences 
Research Council (EPSRC) and involve having 
a student based at United Utilities’ headquarter 
pursuing an Engineering Doctorate (EngD) or 
Doctor of Philosophy (PhD) degree for indus-
trially relevant research. These programmes 
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are therefore also valuable as they enable the 
training of people capable of working at the 
interface of traditionally separate informatics, 
science and engineering disciplines and who 
understand both data science and the 
complexities of water challenges.  
 
This article presents three complementary 
examples of the research work carried out in 
collaboration with the University of Exeter and 
the University of Sheffield to improve event 
management practices. Specifically, the first 
example focusses on event detection, the 
second example focusses on approximate 
event location and the third example focusses 
on post event response planning. These 
examples show how United Utilities is pursuing 
a fully managed life-cycle of events by taking a 
holistic approach to addressing the challenge 
of optimising the decision-making process of 
different teams in order to achieve the required 
level of service and the best utilisation of the 
assets at a minimum cost with an effective 
response time to all events. Indeed, a compre-
hensive, efficient and effective event 
management solution is key to such an 
optimisation challenge, which encompasses 
cross-organizational functions and works 
across different management levels. 
 
Event detection 
The first objective of a comprehensive event 
management solution is to provide near real-
time, actionable event alerts such as, pipe 
bursts/leaks, pressure/flow anomalies, and 
sensor faults / telemetry problems. This 
enables water companies to become aware of 
all the events occurring in a timely fashion and 
better manage the situation, armed with 
valuable insights about these events (e.g. type, 
size, indication of their timing, etc.). This 
section briefly presents an AI-based system[4,5] 
that not only detects pipe bursts/leaks but also 
equipment and other failures in WDSs. This 
section additionally provides a couple of 
examples of the significant impact that this 
system has had on United Utilities’ ability to 
deal with events in its WDS.  
 
The detection system briefly presented here 
makes synergistic use of several self-learning 
AI techniques and statistical data analysis 
tools. In the detection system the automatic 
processing of pressure and flow data 
communicated by the DMA sensors in near 
real-time starts with using advanced 
techniques for ensuring that the data is 
cleansed and erroneous/missing data 
removed and/or infilled (e.g. wavelets are used 
for removing noise from the measured flow 
and especially pressure signals). The 

detection system then makes use of the pre-
processed data to forecast the signal values in 
the near future using Artificial Neural Networks 
(ANNs). These values are then compared with 
incoming observations to collect different 
pieces of evidence about the failure event 
taking place. Statistical Process Control (SPC) 
techniques are also used for the analysis of the 
failure event -induced pressure/flow variations 
and gather additional pieces of evidence about 
the event occurring. The evidence collected 
this way is then processed using Bayesian 
Networks (BNs). BNs enable reasoning under 
uncertainty and simultaneously (synergisti-
cally) analysing multiple event occurrence 
evidence and multiple pressure/flow signals at 
the DMA level to estimate the likelihood of the 
event occurrence and raise corresponding 
detection alarms. The system also offers the 
capability to effectively learn from historical 
events to improve the detection of the future 
ones[5] (albeit it does not need information 
about historical events to start making reliable 
event detections when first applied to a 
DMA/WDS). It does not make use of a 
hydraulic or any other simulation model of the 
analysed WDS - i.e. it works solely by 
extracting useful information from sensor 
signals where bursts and other events leave 
their imprints (i.e. deviations from normal 
pressure and flows signals). This fact makes 
the detection system robust and scalable as it 
enables data to be processed in near real-time 
(i.e. within a 15 minute time window). 
 
Elements of the aforementioned detection 
system, developed initially as part of a 
research at the University of Exeter, have been 
built into United Utilities’ new Event 
Recognition in the Water Network (ERWAN) 
system. The ERWAN system’s development 
carried out in United Utilities also benefitted by 
the following additional technology enhance-
ments: a) development of a new methodology 
to add the capability to handle alarms from 
cascading DMAs[12], b) development of a new 
methodology to add the capability to rank 
alarms (based on a risk framework that 
accounts for factors such as mains length, 
material, number of industrial and key 
customers in a particular area of the water 
network), and c) development of a new 
methodology to add the capability to 
determine the likely root cause of an event. 
These enhancements have provided United 
Utilities additional, helpful event management 
tools. The ERWAN system has been used 
operationally companywide since 2015. It 
processes data from over 7,500 pressure and 
flow sensors every 15 minutes and detects 
events such as pipe bursts and related leaks in 
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a timely and reliable manner - i.e. shortly after 
their occurrence and with high true and low 
false alarm rates. 
 
Compared to previous company practice the 
ERWAN system has enabled United Utilities to 
detect pipe bursts and other failure events 
much more quickly. As an example, on the 31st 
of May 2016 there was a catastrophic failure of 
a 450 mm diameter main in the town of 
Formby which affected 10,600 properties. 
Using the ERWAN system the burst was ident-
ified more than three hours before the 
customers reported any disruption. This early 
event detection ensured planned responses 
were therefore deployed quicker. This also 
meant that customers were disrupted less as 
Alternative Supply Vehicles (ASVs – i.e. 
emergency tankers injecting water into the 
network) were deployed while the main was 
repaired. United Utilities estimates that this 
proactive response reduced interruptions to 
supply by 42%. Additionally, the ERWAN 
system has also demonstrated the potential to 
proactively prevent failures in some cases, e.g. 
via timely detection of faulty Pressure 
Reducing Valves (PRVs) often resulting in a 
follow-on pipe burst event(s). As an example of 
this situation, Figure 1 shows the ERWAN alert 
that was generated on the 9th of September 
2019, indicating that the pressure had 
increased in a DMA. This alert prompted the 
Early Detection Team (EDT) to investigate the 
issue and immediately schedule a job for a 
minor PRV service as the automatically ident-
ified root cause suggested a fault of that asset. 
During that site visit, it was identified that the 
PRV had failed ‘open’. Further work was then 
scheduled for a network resource to carry out 
a major service on the asset. Proactively ident-
ifying that issue with the PRV may have 
prevented a pipe burst in the relevant 
pressure-controlled DMAs (especially 
considering the observed significant pressure 
increase). The potential impact of such a 
failure would have been in excess of £900k in 
Customer supply Minutes Lost (CML) penalty 
cost alone, with the ASV fleet and resource 
utilisation costs and the disruption to the 
customers adding to that. 
 
The use of the ERWAN system has resulted in 
major operational cost savings (due to the 
reduced number of pipe bursts/leaks needed 
to detect and repair) to date and contributed to 
United Utilities’ CML, leakage and Customer 
Measure of Experience (C-Mex) performance 
(due to the avoidance or reduction in issues 
such as poor water pressure, no water, or poor 
water quality - therefore improving the service 
to over 7 million people and 200,000 business 

customers). It has also reduced asset 
maintenance costs by informing the need for 
maintenance prior to asset failure, and 
avoiding unneeded maintenance visits. 
Operational costs are also reduced as it 
enables problems to be dealt with proactively 
which is much less expensive than dealing 
with asset and service failures.  
 
Furthermore, the success of the ERWAN 
system has been important to influencing 
change in the ways of working (e.g. making 
better use of data analytics in the daily 
operation) and the establishment of the EDT in 
United Utilities’ Integrated Control Centre 
(ICC). The ICC is the hub of United Utilities’ 
operations where a team of highly trained 
system operators watch over the network 24/7. 
They use the information and insight provided 
by ERWAN and other monitoring systems to 
perform complex event diagnosis and, by 
making intelligent decisions in the centre, 
prevent abortive work for field staff and resolve 
disruption for customers faster. Increasingly, 
through control and automation, the ICC can 
intervene remotely to resolve issues faster and 
more efficiently. This hub is one of the corner-
stones of United Utilities’ AMP7 (Asset 
Management Plan five-year time period used 
in the English and Welsh water industry) 
Systems Thinking strategy and will catalyse 
future benefits. 
 
Event location 
After it is established that an event has 
occurred in a DMA by using automated 
systems such ERWAN, the next challenge in 
event management, especially when pipe 
burst/leak events are considered, is to 
determine the exact event location. Typically, 
network resources are deployed to DMAs 
containing new burst/leak events so that they 
can be precisely located (or “pinpointed”) and 

then repaired. There are many cases, such as 
when the size of a burst/leak event is small, 
where their location is not readily apparent. In 
these cases, resource intensive pinpointing 
activities such as acoustic surveys are carried 
out so that each of the pipes in a DMA can be 
examined to find the exact burst/leak location. 
It can take several days to examine all the 
pipes in a DMA as, in United Utilities for 
example, the typical total length of mains is 
about 13 km. This represents a significant 
investment of labour, equipment and 
operational expenditure when this approach is 
used across an entire WDS. In this scenario, a 
methodology that enables narrowing down the 
area that must be searched within a DMA (i.e. 
approximately locate the event) would be 
greatly beneficial for water companies. 
 
This section briefly presents the details of a 
novel methodological framework[9] for the 
approximate burst/leak location that is being 
developed as part of a collaboration with the 
University of Sheffield and one example of its 
application to a burst event simulated by the 
controlled opening of a fire hydrant in a United 
Utilities’ DMA. This framework assumes that an 
increased number of pressure sensors can be 
deployed in the DMA being analysed. Due to 
the financial constraints placed on water 
companies and the costs of the additional 
instrumentation required, however, it is 
desirable to limit the number of additional 
instruments to be deployed. Therefore, the 
methodological framework being developed 
also encompasses a method for selecting the 
optimal number and location of sensors to be 
deployed in a particular DMA to achieve a 
desired level of event location performance. 
This tight coupling between optimal sensor 
placement and approximate burst/leak 
location is of particular importance as an 
optimal sensor placement strategy depends 
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Figure 1. ERWAN system alert indicating a sudden pressure increase, likely due to a faulty pressure 
reducing valve.
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on the method that is used to locate the 
potential bursts/leaks and the efficiency of the 
burst/leak location depends on the sensor 
placement. 
 
The novel methodological framework is based 
upon a Spatially Constrained version of the 
Inverse Distance Weighted (SC-IDW) 
geospatial interpolation technique[13]. 
Generally speaking, geostatistical techniques 
have the potential to limit the number of instru-
ments which are deployed in a DMA as they 
can estimate the values of parameters at 
locations which are not measured based on 
the measurements from nearby sensors and, 
hence, to enable higher burst/leak location 
performance to be achieved for a given 
number of sensors[14]. Bearing this in mind, the 
use of SC-IDW enables the overcoming of the 
obvious limitation of traditional geostatistical 
techniques of using the Euclidean distance 
instead of the pipe length between the 
estimation locations and the instrument 
locations (i.e. not accounting for the actual 
network layout of a DMA). The framework 
makes also use of a hydraulic model and of 
the GALAXY multi-objective evolutionary 
algorithm[15] (i.e. a nature inspired AI method-
ology) to identify a Pareto front of optimal 
sensor configurations which simultaneously 
minimise the required number of pressure 
sensors (cost) and the average size of the 
areas to be searched (best level of burst/leak 
approximate location accuracy). 
 
The first step for solving the optimal sensor 
placement problem involves hydraulic 
modelling of bursts/leaks at all nodes and 
building a sensitivity matrix. The valid range of 
burst/leak event sizes to be modelled is deter-
mined for each DMA by considering the 
accuracy of the pressure instruments being 
used (to find the smallest burst/leak event 
sizes) and a maximum allowable increase in 
flow (to determine the largest burst/leak event 
sizes for each burst/leak event location). The 
aforementioned sensitivity matrix is based on 
the changes in pressure for each potential 
sensor location, which are calculated by 
comparing the pressure in the hydraulic model 
with no burst/leak modelled with the pressure 
in the model with each burst/leak modelled. 
Additional computations are then conducted 
aimed at reducing the search space of the 
optimisation (i.e. grouping together events that 
cannot be distinguished given the pressure 
instruments’ accuracy). Following this, the 
values of the pressure changes in the 
‘grouped’ sensitivity matrix are used for 
building various interpolation surfaces during 
the optimisation step, which aims at 

maximising (using an objective function also 
based on the SC-IDW interpolation technique 
and a threshold that defines the burst/leak 
search area on an interpolation surface) the 
location performance of each configuration of 
sensors for every burst/leak being modelled. 
After determining the optimal sensors configur-
ation by looking at the results of the 
optimisation step (and after deploying the 
pressure sensors in the field), the SC-IDW 
interpolation technique can be used 
operationally to calculate the approximate 
location of an actual burst/leak occurring in a 
DMA (once a burst/leak has been detected or 
is suspected) based on the actual changes 
(from ‘normal’) in pressures measured at the 
sensor locations. The calculated search area is 
then highlighted on a map of the DMA, which 
is passed to network resources to aid with 
pinpointing the burst/leak event.  
 
Figure 2 shows an example of such a map 
generated for the approximate location of a 
burst event simulated on the 14th of February 
2020 by the controlled opening of a fire 
hydrant (so that the exact size and start time 
are known) in one of United Utilities’ DMAs. 
This DMA contains approximately 2,100 
properties and 25 km of mains. A PRV controls 
the pressure in one section of the DMA 
because of the highly variable elevation in the 
area. The fire hydrant opening was adjusted to 
achieve a flow rate of 0.6 l/s which is equiv-
alent to approximately 6% of the average flow 
rate into the DMA calculated over a normal 
week. In Figure 2, the locations of the three 
optimally placed pressure sensors (deter-
mined by considering a total of 934 potential 

burst/leak event scenarios across 7 burst/leak 
event sizes) are shown as blue dots. The 
location of the opened fire hydrant is shown as 
a green dot. The pipes and nodes within the 
calculated search area are coloured in red. It 
can be noticed that this event was successfully 
approximately located within a search area 
that is less than a quarter of the total length of 
mains in the DMA. This example demonstrates 
the potential of the methodological framework 
being developed to allow successful 
approximate location of relatively small 
burst/leak events by using only a few 
additional optimally placed pressure sensors. 
This said, it is expected that the search areas 
can be further reduced by deploying more 
sensors. Nevertheless, by reducing the search 
area to a sub-region within a DMA, significant 
reductions in the time taken to pinpoint 
burst/leak events can be achieved (e.g. by ¾ 
as exemplified here). 
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Figure 2. Example of a successful approximate 
burst location.

Figure 3. New response methodology’s flowchart.
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Post event response  
After successful detection and location of 
events, the next considerable challenge for 
water companies during the event 
management process is the identification of a 
suitable strategy to respond to those events in 
near real-time. This section briefly presents the 
details of a novel methodology[11] for the 
response to water network events that is being 
developed as part of a collaboration with the 
University of Exeter and the initial, promising 
results obtained from its application on a semi-
real case study. 
 
The novel event response methodology 
presented here aims at improving United 
Utilities’ current event response practice by 
supporting/guiding the ICC operators in the 
identification of low end-impact (i.e. the total 
impact after implementation of the response 
solution) and low cost response solutions. It 
consists of the following main steps: (1) robust 
initial event impact assessment (over a set 
horizon), (2) identification of a suitable isolation 
plan, (3) human-based, but computer-aided, 
identification of a response solution (i.e. 
manual solutions proposed by an operator), 
(4) automatic identification of a response 
solution generated using Genetic Algorithms 
(GAs) optimisation, and (5) selection of the 
response solution to be implemented in the 
field. Note that these five steps do not need to 
be necessarily carried out in a sequential 
manner. The following three-stage routine is 
performed in each of the aforementioned step: 
Stage 1) involves obtaining various operators’ 
inputs (e.g. impact horizon, earliest time the 
repair can be initiated, etc.), Stage 2) involves 
carrying out hydraulic simulations to assess 
the end-impact and cost of each solution, and 
Stage 3) involves visualising the calculated 
end-impact and computing the cost of each 
solution. The new response methodology’s 
steps are shown as a flowchart in Figure 3. 
 
The above event response methodology is 
implemented in the Interactive Response 
Planning Tool (IRPT), which has been 
developed in Matlab. In the IRPT, the hydraulic 
simulations are carried out by using 
EPANET2[16] and pressure-driven network 
modelling based on the methodology 
developed by Paez et al.[17]. The Non-
Dominated Sorting Genetic Algorithm II or 
NSGA II[18] (i.e. another AI tool/technique) is 
used to solve the multi-objective optimisation 
problem (albeit work has also been done to 
develop and use a new heuristic method that 
offers the advantage of significantly reducing 
the time taken to find near-optimal response 
solutions). The IRPT also links to the Quantum 

Geographic Information System (QGIS) 
software to visualise the spatial distribution of 
end-impact on a suitable map of the analysed 
WDS.  
 
The IRPT facilitates an operator’s decision-
making by considering/providing: (i) structured 
yet flexible approach that supports and guides 
the operator throughout the entire response 
process, whilst allowing the operator to have a 
final say, (ii) novel interaction with the operator 
in near real-time via the simple IRPT graphical 
user interface (e.g. allowing operators to 
propose different ‘what-if’ scenarios without 
being hydraulic experts), (iii) provision of 
automatically generated advices (e.g. optimal 
response solutions and assessed end-
impacts/costs), (iv) improved impact 
assessment using realistic (i.e. based on real-
life metrics used by water utilities) impact 
indicators that cover different aspects of the 
event, which are consistently calculated for 
every considered response intervention, (v) 
capability to select multiple common 
operational intervention types such as 
rezoning and water injection (based on 
operational costs, availability of different types 
of interventions, etc.), and (vi) capability to 
easily compare different response solutions by 
visualising, inter alia, the impact coverage 
(using maps) and cost of different solutions. As 
a result, low end-impact and cost solutions 
can be effectively identified. This has multiple 
benefits for a water company. The most 
important benefit is reducing the impact on the 
customers, which can be costly in many ways 
(financially but also in terms of reputation, 
etc.). Other benefits related to costs include: a) 
operational savings in the long-term as many 
events may occur each year - although the 
cost of a single response solution may be 
small (e.g. hundreds of pounds), and b) less 
time spent on site for opening valves or 
injecting water - this could benefit water 
companies in terms of more efficient 
scheduling of the network resources’ activities. 
 
The IRPT is illustrated here on a semi-real case 
study to demonstrate the benefit of a response 

solution identified through interaction with the 
IRPT (hereafter referred to as the ‘new method-
ology response’) by comparing it to a 
response solution based on typical water 
companies’ current practice (hereafter referred 
to as the ‘current practice response’). Note that 
the case study under scrutiny is referred to 
here as “semi-real” because, despite being 
based on a real system and event, several 
simplifications were made with regard to the 
actual response actions taken by the ICC 
operator in real-life. This is primarily because 
the IRPT is still in development and did not yet 
offer the capability of exactly replicating those 
real-life response actions. Bearing this in mind, 
note that the used ‘current practice response’ 
label should also be construed accordingly. 
The considered event was a shutdown of a 
Water Treatment Work (WTW) (serving multiple 
DMAs and approximately 100,000 customers) 
due to a burst on a main within the WTW. The 
shutdown resulted in intermittent supply and 
low pressure to some customers. The WTW 
remained shut until the quality of the water 
leaving the WTW could be assured to meet the 
required standards. United Utilities mobilised 
ASVs to the area, which injected water at 
various points in the affected area and at 
different times during the incident.  
 
Furthermore, United Utilities implemented a 
number of network changes (i.e. rezoning) in 
order to minimize customer end-impact. 
Bottled water was delivered directly to priority 
services and sensitive customers. The repair 
was completed 24 hours after the shutdown. 
Table 1 summarises the result obtained on this 
case study in terms of the total end-impact and 
the cost calculated by the IRPT for the ‘new 
methodology response’, ‘current practice 
response’ and ‘no response’ (i.e. initial 
condition of the system after the event) 
scenarios. For each of those scenarios, Table 1 
also presents the calculated values of the 
various impact indicators (which make up the 
total end-impact), namely: a) CML, b) Average 
Minutes Low Pressure (AMLP), c) 
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                                          CML             AMLP           UW           DRI         Cost        Total end- 
                                   (mins/cust)   (mins/cust)       (m3)           (-)             (£)        impact (%) 
                                                                                                                                                  
No response                       4                   3.6              3330           14               0                11.1 
 
Current practice  
response                            2.1                   2               1825          273           894               6.5 
 
New methodology  
response                            1.6                   2               1475           92             55                 5 

Table 1. Total end-impact, cost and values of the considered impact indicators for the ‘no response’, 
‘current practice response’, and ‘new methodology response’.
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water meter technology vendors or private 
software companies are providing cloud-
based data repositories, customer portals, and 
offering to fill utilities’ AI gaps as an add-on 
service. In this regard, the development of 
smart metering and AI can be considered 
disruptive, as it created opportunities for new 
economic models, tech actors, and investors 
previously not attracted by the water sector. 
The next significant innovation and business 
step will be materialized when synergies 
between the water sector and other utility 
sectors (e.g., electricity, gas, telecommunica-
tions) will be exploited in a cost-effective 
manner to realize the vision of a digital multi-
utility service provider [16]. Exploiting multi-
sectoral synergies will reduce asset and 
operational costs by collecting concurrent 
water-energy data efficiently,  
implementing flexible and data agnostic 
processing techniques, and ultimately 
designing integrated tailor-made services to 
customers. n 

[9] Monks, I., Stewart, R. A., Sahin, O. and Keller, R., 2019. 
Revealing unreported benefits of digital water metering: 
Literature review and expert opinions. Water, 11(4), 838. 

[10] Monks, I., Stewart, R. A., O., Keller, R and Prevos, P., Towards 
understanding the anticipated customer benefits of digital 
water metering. Urban Water J. (submitted June 2020, 
accepted November 2020) doi:10.1080/1573062X.2020. 
1857800 

[11] Cominola, A., Nguyen, K., Giuliani, M., Stewart, R. A., Maier, H. 
R. and Castelletti, A., 2019. Data mining to uncover 
heterogeneous water use behaviors from smart meter 
data. Water Resources Research, 55(11), 9315-9333. 

[12] Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O. and 
Siriwardene, N., 2018. Re-engineering traditional urban water 
management practices with smart metering and 
informatics. Environmental Modelling & Software, 101, 256-267. 

[13] Thiemann, R., Haas, J. and Schlenger, D., 2011. Reaping the 
benefits of AMI: A Kansas City case study. Journal-American 
Water Works Association, 103(4), 38-41. 

[14] Davies, K., Doolan, C., Van Den Honert, R. and Shi, R., 2014. 
Water‐saving impacts of Smart Meter technology: An empirical 
5 year, whole‐of‐community study in Sydney, Australia. Water 
Resources Research, 50(9), pp.7348-7358. 

[15] King, A. A. and Baatartogtokh, B., 2015. How useful is the 
theory of disruptive innovation?. MIT Sloan Management 
Review, 57(1), 77. 

[16] Stewart, R. A., Nguyen, K., Beal, C., Zhang, H., Sahin, O., 
Bertone, E., Vieira, A.S., Castelletti, A., Cominola, A., Giuliani, 
M. and Giurco, D., 2018. Integrated intelligent water-energy 
metering systems and informatics: Visioning a digital multi-
utility service provider. Environmental Modelling & 
Software, 105, 94-117. 

two leading UK universities in water engin-
eering, works by extracting useful information 
form pressure and flow sensors and other data 
sources available.  
 
The new technology enables United Utilities to 
manage the above events much more pro-
actively than before by reducing the time of 
awareness to these events but also, in some 
cases, preventing events from taking place 
altogether. This combination has resulted in a 
range of benefits achieved, from major 
operational cost savings to reduced inter-
ruptions to supply and hence improved service 
to over 7 million people and 200,000 
businesses in the north west of England. As 
the new technology has also demonstrated the 
potential to more efficiently guide United 
Utilities’ personnel to the problem areas and to 
support the ICC operators to make better and 
more informed decisions when tasked with the 
identification of a suitable strategy to respond 
to those events, further benefits arising from 
the pursued fully managed life-cycle of events 
approach are expected. n 
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“At a minimum, water service providers must embrace incremental digital transformation, or 
government sanctioned alternative retail models offered by innovative private technology 
providers will be pushed upon them and strip back their function to heavily constrained 

water asset operators.” 
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Unaccounted for Water (UW), and d) 
Discolouration Risk Increase (DRI). It can be 
noticed that even though CML, AMLP and UW 
are reduced when compared to the ‘no 
response’ scenario, the ‘new methodology 
response’ offers further improvements over the 
‘current practice response’. Indeed, the ‘new 
methodology response’ further reduced all 
impact indicators except AMLP that remained 
the same. The ‘new methodology response’ 
also suggested a smaller number of interven-
tions to implement as evidenced by the 
significant improvement in DRI and cost. In 
light of the above, it can be concluded that 
through interaction with the IRPT operators 
could have identified a more effective response 
solution. Hence, this case study shows the 
potential of the IRPT to be beneficially used by 
United Utilities to make better and more 
informed decisions. 
 
Summary 
This paper describes an AI-based approach for 
managing events in WDSs such as pipe 
bursts/leaks and equipment failure. The key 
pieces of new technology are comprised of a 
series of ML and other advanced analytics 
methods that are used to detect and locate 
these events and then identify an optimal 
response strategy, all in (semi) automated 
fashion and in near real-time. This new 
technology, developed in collaboration with 


