GLOBAL WATER SECURITY SEMINAR

BEST PRACTICES ON DROUGHT AND FLOOD MANAGEMENT: ENGINEER’S CONTRIBUTION

Teodoro Estrela & Tomás A. Sancho
WCCE-World Council of Civil Engineers
WFEO-World Federation of Engineers Organizations
Bridging the Gaps in Water Engineering Issues.

01. Water Security is on the Rise

Chengdu 2013 Global Water Security Declaration

Seven global water organizations under the auspices of UN Water:

- IAHR
- ICOLD
- ICID
- WASER
- IWRA
- IAHS
- WCCE
Index

1. INTRODUCTION
2. OBJECTIVES
3. GENERAL FRAMEWORK
4. FLOODS AND DROUGHTS IN THE WORLD
5. EFFECTS OF CLIMATE CHANGE
6. EVOLUTION OF WATER POLICIES TO MANAGE EXTREME HYDROLOGICAL EVENTS
7. CASES AND EXPERIENCES - BOX IN THE REPORT
8. KNOWLEDGE, TECHNOLOGY AND INNOVATION
9. EXPERIENCES AND BEST PRACTICES
10. LESSONS LEARNED
11. CHALLENGES FOR ENGINEERS
12. CONTRIBUTIONS
1. Introduction

- The Standing Committee on Water (SCoW) of the World Council of Civil Engineers (WCCE) covers water engineering initiatives and its relations with United Nations’ bodies and agencies, primarily with UN-Water and UNESCO. WCCE is an UN-WATER partner.

- The Working Group on Water (WGoW) of the World Federation of Engineering Organizations (WFEO), shows with its Reports the contribution of engineering to the accomplishment of United Nations’ Sustainable Development Goals (SDG 6 specially). SCoW Chair is the Executive Director of the WGoW.

- WFEO’s WGoW was created by its Executive Council at the meeting held in October 2018 in London on the occasion of the Global Engineering Congress.

- Such Working Group on Water has committed to deliver three monographs during its 2019-2021 three-year mandate regarding the following topics: Best practices on Drought and flood management: Engineer’s contribution, 2019; Achieving SDG 6 on Water: Engineer’s contribution, 2020 and Adaptation to climate change - Water: Engineer’s contribution, 2021.
Learn the ABCs of disaster risk reduction
http://www.unisdr.org/we/inform/terminology
2 Objectives

- Main goal: to describe the best practices for the risk management of droughts and floods, highlighting the engineer’s contribution to such practices taking into account:
 - economic impacts caused by extreme hydrological events
 - Climate change
 - Evolution from crisis-based approach to risk management or adaptive management approach
3. General framework (1/2)

- Number of people living at risk-flooding areas will increase from 1.2 to 1.6 billion people by 2050 (OECD)

- The greatest number of weather-related disasters is due to flooding, followed closely by storms (UNDRR)
3. General framework (2/2)

- The total elimination of the risk of flooding is not possible, no matter how many population protection measures are implemented.
- Therefore, it is necessary to promote awareness of self-protection in citizens.
- Unlike floods, droughts are an extreme hydrological phenomenon of low water availability, which take place slowly and imperceptibly and that sometimes when detected, is too late and can cause very high social, economic and environmental impacts.
- Extreme hydrological events - droughts and floods - have become current global topics regarding water issues, as reflected in the United Nations’ 2030 Agenda (UN). (SDG 6 & SDG 11)
4. Floods and droughts in the World

- The economic impacts caused by extreme hydrological events - floods and droughts - have been increasing around the world causing high social, economic and environmental impacts.

Figure 2. Evolution of water surface in the Lake Chad

Figure 3. Type of damages due to floods
5. Effects of climate change

“Climate change is part of other global changes of greater scope, which causes negative effects on the availability of resources and the frequency of presentation of extreme hydrological events, such as droughts and floods”

(Intergovernmental Panel on Climate Change, 2014).
6. Evolution of water policies to manage extreme hydrological events (1/2)

1. Traditional approaches: reactive. Measures and actions that are only triggered after the extreme event has occurred.

2. Approaches based on risk reduction:

<table>
<thead>
<tr>
<th></th>
<th>Prospective</th>
<th>Corrective</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaster risk management</td>
<td>Avoid the risk</td>
<td>Reduce/mitigate risk</td>
<td>Enhance resilience to disaster (economic and social)</td>
</tr>
<tr>
<td>Climate change</td>
<td>Climate change mitigation</td>
<td>Climate change adaptation</td>
<td>Enhance resilience to extreme events associated to climate change.</td>
</tr>
<tr>
<td>Sustainable Development</td>
<td>Contribute to future sustainable development</td>
<td>Enhance the sustainability of the current development framework</td>
<td>Enhance resilience to all common risks.</td>
</tr>
</tbody>
</table>

Table 1. Relationships between disaster risk management, climate change and sustainable development. Source: UNDRR, 2015
6. Evolution of water policies to manage extreme hydrological events (2/2)

3. Governance in the management of extreme hydrological events: stakeholders, mechanisms, regulatory and legal frameworks
 • Coordination between different levels of government
 • Administrative, hydrological and political boundaries
 • Stakeholder engagement
 • Public and private insurance systems

7. Knowledge, technology and innovation

1. Hydrological and hydraulic models.
2. Hazard and flood risk maps.
3. Actions: technology and innovation
4. Advances in warning systems
8. Cases and experiences - Box in the Report

Box 1.- Lake Chad Crisis
Box 2.- European SUFRI Project
Box 3.- Managing Droughts in Portugal
Box 4.- Principles of EU Flood Directive
Box 5.- State of art on Flood Damage Assessment
Box 6.- Flood Mapping Project for key areas China
Box 7.- Drought Risk Management through AQUATOOL DSS
Box 8.- Cooperation in Drought Planning and Management in Iberian Peninsula
Box 9.- Drought Management Plans in Spain
Box 10.- La Paz (Bolivia) Drought Management Plan
Box 11.- Flood Risk Management and Ecosystem Restoration in Arlington, Texas, USA
Box 12.- Flood Risk Protection through Reservoirs Management – Ebro River Basin, Spain
Box 13.- Nature Based Solutions to prevent Urban Flooding (USDS)
Box 14.- International experiences in the protection of buildings and constructions
Box 15.- Flood Warning Systems in Spain
Box 16.- China’s Flood Forecast and Warning System
Box 17.- USA National Flood Insurance Program
Box 18.- Measures in Cyprus during 1996-2000 Drought Period
Box 19.- Reuse of Urban Water for Wetland Conservation in Dry Periods, Apuria, Italy.
The most ignored crisis in the world: Lake Chad has lost more than 90% of its original surface in four decades.

Such has been called the great environmental and humanitarian crisis caused by the effective disappearance of Lake Chad, which in the 1960s - with 25,000 km² of surface - ranked sixth largest lake in the world. Only two decades later, in the 80s, lake Chad’s surface reduced to just 2,500 km², that is, 10% of its original dimension. By 2013, the lake recovered slightly, because of an exceptional increase in rainfall, which returned its surface to 5,000 km², only 20% of its former surface, currently reduced to an immense set of loosely connected ponds, surrounded by a great desert.

The current situation affects around 40 million people, who depended on the lake to obtain drinking water, fish and cultivate the nearby lands, and who now migrate massively southwards to Guinea’s savannah, search for better life conditions.

United Nations estimates that almost 11 million people need humanitarian assistance because of this situation. The cause lies in a situation of prolonged drought, because of the general decrease in rainfall. Concurrent to this cause, other factors such as the guerilla war affecting these 4 countries (Niger, Nigeria, Chad and Cameroon) and an unsustainable increase in water withdrawals for different uses contribute to worsen such crisis.

Figure 1. Evolution of water Surface in the Lake Chad

Reuse of urban water for wetland conservation in dry periods. The case of the Torre Guareto Reserve in Apulia, Italy.

Apulia and the coastal areas of Basilicata, in southern Italy, are exposed to frequent problems of water supply due to a historical problem of scarcity not well resolved. In recent decades, efforts have made to improve infrastructure and to build large dams to enhance water resource management, also increasing the extraction of groundwater, which has led to a critical situation its aquifer status. It has also endangered the survival of the Torre Guaceto Reserve, a wetland of international interest included in the Ramsar Convention, Special Protection Area (Directive 79/409 / EEC), marine reserve and Site of Community Importance LIC (Directive 92 / 43 / EEC).

The overexploitation of the aquifer constitutes the fundamental risk for the survival of the "Torre Guaceto Reserve". The very high concentration of salt in groundwater has led to the reduction and even the extinction of some very particular and rare macroinvertebrate species. This situation has become critical during drought periods. On such grounds, it was necessary to apply measures to prevent the deterioration of its current state during those episodes. The Wastewater Treatment Plant (WWTP) of Carovigno represented a potential source of unconventional water available in the agricultural area to replace groundwater during periods of drought.

International cooperation: Albufeira Agreement

- 5 SHARED RIVER BASINS
- 10 SPANISH INLAND WATER RESOURCES PLANNING REGIONS
- 10 PORTUGUESE INLAND WATER RESOURCES PLANNING REGIONS
- 2 SPANISH ISLAND WATER RESOURCES PLANNING REGIONS
- 2 PORTUGUESE ISLAND WATER RESOURCES PLANNING REGIONS

| RIVER BASIN | Total Area (km²) | Portugal | | | | Spain | |
|-------------|-----------------|----------|---|---|---|---|
| MINHO | 17.080 | 850 | 5 | 16.230 | 95 |
| LIMA | 2.480 | 1.180 | 48 | 1.300 | 52 |
| DOURO | 97.600 | 18.600 | 19 | 79.000 | 81 |
| TEJO | 80.600 | 24.800 | 31 | 55.800 | 69 |
| GUADIANA | 66.800 | 11.500 | 17 | 55.300 | 83 |
| TOTAL | 264.560 | 56.930 | 22 | 207.630 | 78 |

- 5 river basins/country
 - Portugal – 64%
 - Spain - 42%

5 SHARED RIVER BASINS:

- MINHO
- LIMA
- DOURO
- TEJO
- GUADIANA

10 SPANISH INLAND WATER RESOURCES PLANNING REGIONS:

- Albufeira Agreement
Principles of the Albufeira Convention

- Extension of the territorial scope and reference material of the agreements in effect.
- Global perspective of cooperation and respect between the Parties.
- Coordination of water planning and management by river basin.
- Respect and compatibility with existing situations and those derived from agreements in effect.

The compliance with the flow regime agreed under the Convention is being ensured, and in the case of potential drought situations, Portugal and Spain implement the measures that are considered necessary to minimize their effects.
Drought Management Plans

- The National Drought Indicator System is formed by control points about volume stored in reservoirs, groundwater levels, river flows discharges and precipitations.

- A crucial and innovative aspect of DMPs in Spain is to establish an adequate link between river basin drought status and actions to be taken.

<table>
<thead>
<tr>
<th>Type of mitigation measure</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-0.5</td>
</tr>
<tr>
<td></td>
<td>0.5-0.3</td>
</tr>
<tr>
<td></td>
<td>0.3-0.1</td>
</tr>
<tr>
<td></td>
<td>0.1-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Normal</th>
<th>Pre-alert</th>
<th>Alert</th>
<th>Emergency</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Objective of measure</th>
<th>Planning</th>
<th>Information-control</th>
<th>Conservation</th>
<th>Restriction</th>
</tr>
</thead>
</table>
Drought management plans have revealed as an essential tool for drought management in Spain.

Improvement of water management, coordinated use of surface water and groundwater, water saves on irrigation and improving on the monitoring networks have been key elements to cope droughts.

EXPERIENCE ACQUIRED during 2014-2018 drought in SPAIN

Figure 7. Evolution of drought indicator at the Júcar river basin for the 2001 – 2016 period (elaborated with data taken from the Drought Indicator System of the Júcar River Basin Authority)
Fig. 14. Processes and institutional linkages in the pro-active responses to hydrological drought and water scarcity in Spain.

Fig. 17. Drought management at the basin level: Indicators and measures for different levels of drought intensity.
Fig. 18. Summary of the NGO Fundación Ecología y Desarrollo (ECODES) program to save water in the city of Zaragoza, Spain.
9. Experiences and Best Practices (1/5)

1. **Risk management plans: floods and droughts.**

![Map of Spain showing drought indicators](image1.png)

Figure 12. Drought indicators Monitoring map in Spain, July 2018.

![Map of Johnson Creek Watershed Council](image2.png)

Figure 14. Johnson Creek River Basin
2. Structural Protection Measures.

1. Flood control reservoirs
2. Diversion channels
3. Embankments and dykes
4. Channel modification
5. Drainage of linear infrastructures
6. Green infrastructure and natural water retention measures
7. Hydrological restoration and flood zone measures
8. Non-structural or management measures: prevention, alert and response (next slide)
Since 1936 the Corps has completed over 400 major lake and reservoir projects, emplaced over 8,500 miles of levees and dikes, and implemented hundreds of smaller local flood damage reduction projects.
9. Experiences and Best Practices (4/5)

3. Non-structural or management measures: prevention, alert and response:

1. Adaptation measures for potentially affected assets, for damage mitigation
2. Prevention measures: land management and urban planning
3. Warning measures: flood warning systems
4. Response measures: civil protection
5. Response measures: flood insurance
Spain National Cartographic System of Floodable Areas
4. Measures to deal with drought risks.

1. Integrated Water Resources Management
2. Management and control measures: resource allocation, water savings and temporary transfer of rights
3. Environmental measures
4. Drought warning and monitoring system
5. Agricultural insurance
10. Lessons learned

1. **Importance of planning**: addressing the risks in a planned way. Anticipate, graduate, coordinate actions, establish actors, measures, monitoring, reviewing.

 Engineering participation ensures effectiveness in measures to be studied, proposed and applied, optimizing risk management.

2. **Adaptative management**: land use, buildings and facilities, evacuation of people and property, water use.

 Engineering plays a very important role in estimating the occurrence of time the natural phenomena, the potential affected areas, the risks and potential damages, the definition of adaptation actions, the best evacuation alternatives to non-flood areas, the best options to guarantee the essential uses of water and limit socio-economic damages in droughts, and to establish previously appropriate guidelines and actions in flood and drought management plans.
10. Lessons learned

Engineering is totally necessary for its correct use and to foster its improvement. It is engineering what drives and focuses the development of Decision Support Systems, both in floods, to decide the best management options based on the existing alternatives and in situations of droughts, to study and evaluate the most appropriate integrated resource management options to mitigate their effects.

4. Combination of measures: Sound engineering to achieve satisfactory solutions, case by case.
11. Challenges for engineers

1. **The current role:** Current engineering practice has become increasingly collaborative, favouring specialization, undermining engineers’ leadership roles formerly assumed by more broad-based generalist self-sufficient engineers. On the other hand, specialization provides high qualification for the operation of complex tools in the analysis of extreme events, such as Decision Support Systems (DSS) and Geographic Information Systems GIS for drought management and floods or mathematical models used in hydraulics studies and in the design of flood rolling dams and other infrastructures.

Another aspect increasingly present in current engineering is global practice and its corresponding demands: languages, knowledge of each region’s “water culture” and adaptation to diverse local factors, as well as the cross-knowledge transfer between countries with different features and idiosyncrasies.
11. Challenges for engineers

2. Professional practice indicators: Proposing WFEO a survey to better global statistics regarding the number of engineering professionals dedicated to water issues

3. Innovation and technology:
 - Technology development (BIM, 3D printing, IoT, Big Data, Machine learning, Augmented reality, Drones...)
 - Infrastructure construction and design of resilient systems
 - Extreme events management and restoration
4. Social responsibility:

- **ASCE 2025 VISION**

- Risk assessment and its mitigation is a key principle of engineering practice. It imposes a responsible commitment to civil engineering professionals to adopt due to assess the effect of climate change on the works and the service they provide. This is reflected twofold. Firstly, engineers in charge of public facilities and infrastructure design and management will have to adapt to climate change at the local level to ensure public health and safety. Secondly, the growing level of awareness to this risk and the high visibility of the impacts derived from the most intense storms and extraordinary events raise accountability issues. Engineers who do not exercise due diligence regarding climate change, in short, may be considered personally or jointly liable for damages or failures arising from the impacts of climate change on engineering systems and water security.
11. Challenges for engineers

5. Emerging and future areas:

- Deepen studies of the CC effects on resources, the water environment, droughts and floods and water demands in order to improve their consideration in planning and define and implement the most appropriate adaptation measures.

- Incorporate CC measures into national policies, strategies and plans, making progress in adapting and guaranteeing the resilience of the planned infrastructure.

- Include CC as one of the factors to consider in the design, operation and management for the safety of the new Critical Infrastructures, and for the adaptation of existing ones.

To achieve this goals, the following actions should be implemented:

- Develop joint initiatives to develop projects within the innovation trends regarding the fields of Information, Planning, Engineering, Technology and Water Management.

- Join efforts and develop R & D & I projects that, applying the available technologies and instruments (mathematical models, measurement, telemetry, remote control or remote control, remote sensing, purification treatments, generation of unconventional resources through water regeneration or desalination, etc.) allow the improvement of water management. Establish technological innovation as a key development factor.

- Improve governance, invest in institutional capacity building and apply integrated, transparent and effective solutions in water management.
11. Challenges for engineers

6. New roles and challenges:

The 2030 Agenda states that the achievement of sustainable development in its three dimensions, economic, environmental and social, must be addressed in an integrated and balanced manner. Thus, water is the SDG 6. Access to water and sanitation, to affordable and non-polluting energy, to food security, sustainable growth, the ability to adapt to risks related to climate and natural disasters, such as droughts and floods, resilient infrastructure or international cooperation, are clear examples of interconnected issues. Today, engineers around the world are addressing global challenges, such as climate change, locally. When they carry out studies or project works, they must take these global challenges into consideration.

Engineers face decentralized teamwork often. Leading multidisciplinary teams in droughts and floods, is a great challenge. Furthermore, increased globalization requires engineers to overcome any cultural bias in its professional practice, a skill that should be exercised.

Engineers must best practices worldwide such as 2013 WFEO’s Codes of Best Practices for Sustainable Development and Environmental Protection “Think with a global vision and act with a local vision” (WFEO, 2013), and 2015 “Code of Good Practices: Principles of Adaptation to Climate Change for Engineers” (WFEO, 2015), expanded and adapted locally.
12. Contributions

Authors

<table>
<thead>
<tr>
<th>Authors</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teodoro Estrela</td>
<td>World Council of Civil Engineers (WCCE)</td>
</tr>
<tr>
<td>Tomás Sancho</td>
<td>World Federation of Engineers Organizations</td>
</tr>
<tr>
<td>Francesco Baiu</td>
<td>Politecnico of Milano, Italy</td>
</tr>
<tr>
<td>ZHANG Cheng</td>
<td>IWHR - China</td>
</tr>
<tr>
<td>Eduardo Echeverria</td>
<td>AICCP-Civil Engineering Association Spain</td>
</tr>
<tr>
<td>Ignacio González Canales</td>
<td>IIE- Engineering Institute - Spain</td>
</tr>
<tr>
<td>Daniela Molinari</td>
<td>International Association for Hydro-Environment Engineering and Research (IAHR)</td>
</tr>
<tr>
<td>Justo Mora</td>
<td>WCCE Standing Committee on Water</td>
</tr>
<tr>
<td>José María Vidanet</td>
<td>WCCE Standing Committee on Water</td>
</tr>
<tr>
<td>Sara Perales</td>
<td>AICCP-Civil Engineering Association Spain</td>
</tr>
<tr>
<td>Joaquín Pajas</td>
<td>Ordem dos Engenheiros – Engineers Association of Portugal</td>
</tr>
<tr>
<td>Virendra Proag</td>
<td>University of Mauritius</td>
</tr>
<tr>
<td>José Francisco Sáez</td>
<td>WCCE Executive Director</td>
</tr>
<tr>
<td>Óscar García</td>
<td>CIAPR – Costa Rica</td>
</tr>
</tbody>
</table>

Other contributors (questionnaires)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatem Hameed Hussein</td>
<td>National Center for Water Resources Management - Iraq</td>
</tr>
<tr>
<td>Janja Kramer Stanko</td>
<td>Civil Engineering Faculty, University of Maribor, Slovenia</td>
</tr>
<tr>
<td>Tobias Rudolph & Peter Goerke-Malet</td>
<td>Technische Hochschule Georg Agricola University - Germany</td>
</tr>
<tr>
<td>Ali M. Zeidan</td>
<td>Khelb & Alemi - Lebanon</td>
</tr>
</tbody>
</table>
VIRTuous urban water cycle: technical issues

• The water reserves in dams (or available in aquifers) is the indicator that relates to the guarantee of supply, and should be managed by foreseeing hyperannual drought cycles.

• Alternative resources (desalination, reclaimed water - regeneration and reutilization) are more expensive and increase the energy dependence, so they should be considered as complementary sources, not as a replacement alternatives.

• It is necessary to control and monitor the resource in quantity and quality. There is no reliable information about neither supply amounts nor supply typologies in each city. Even less reliable information is on wastewater typologies (septic tanks, sewage, sewage and waste water treatment plants)
• In developed countries an average person uses **500-800 liters** of water per day, which is 10 times more than the average in least developed countries.

• It highlights the great benefits of **network sectoritation** (for consumption control, leakage control and investment planning) and connections and distribution rings.

• The importance of **sanitation and waste water treatment**, which affects the sustainability of the resource and the health conditions of the population.

• It is very important the **technification** of the systems and provide them with "intelligence" which enables better operation and management thereof, through R&D and knowledge transfer.
MADRID (Spain)
After a difficult scenario of increasing population, it is possible to reduce water consumption while keeping the supply warranty.
STRATEGIES FOR WATER SUPPLY IN MADRID: local actions

- **28 wells** with 400–700 m depth
- **56 km of principal conductions**, diameter of 800 – 1600 mm, transporting up to 2 m³/s.
- Connections to **2 DWTP** (Majadahonda y Griñón)
- 56 km of electricity lines and 3 substations (14.MW)
- **Remote control** with telemetry using optic fiber (connection to the main water control)
STRATEGIES FOR WATER SUPPLY IN MADRID: supply ring

Enlargement and improvement of the water transport network, warranting the supply to the new consumption areas.

Alternative supply to the south and east regions with water taken from the west (410 hm3/year between Alberche and Valmayor).

- **136.4 km** (2 pipes of 1.400 mm diameter)
- **Funding: 430 M€**
STRATEGIES FOR WATER SUPPLY IN MADRID: reclaimed water

- Tertiary treatment
- Tertiary under construction
- Tertiary under project
- Transport network
- Current Municipal network
- Municipal network under construction
- Municipal network under project
- Municipal network (3rd phase)
STRATEGIES FOR WATER SUPPLY IN MADRID: alternative resources
BARCELONA (Spain)
• New rate definitions according to the service and the efficiency
• Division of the network in multiple areas (optimization and leak detections)
• Installation of meters (users characterization, better calibration in mathematic model)

Better planning and management
ACTIONS ON RESOURCES: RECLAIMED WATER
Q = 3.5 m³/s
V = 50 hm³/year
Thanks to tertiary treatment
ACTIONS ON RESOURCES: DESALINATION
NEW BALANCE AFTER THE MEASURES

DEMAND

525 hm³/year (5% saving)

WATER RESOURCES

770 hm³/year (140 hm³ increase):

+ 80 Hm³/año desalination
+ 35 hm³/año reclaimed water
+ 30 hm³/año increased groundwater

BALANCE
770 / 525 = 1,47

47 % < 50% mínimo recomendable
Thank you

tasancho@gmail.com