

## Water Security in China: Problems, Pathways and Practices

## **Jianyun ZHANG**

### Nanjing Hydraulic Research Institute, China Research Center for Climate Change, MWR, China

Sept. 2020



### Water Security in China



# Outlines









8000 7328 年人均水资源占有量 Annual water resources per capita 2100 1646 636 456 272 104 NortheastYellow Huaihe Haihe World China Beijing Isxrael River China River River

Annual precipitation: 648mm, 20% lower than global average

Annual water availability per capita is 2100 m<sup>3</sup>, which is only 28% of world's average.





- 1. Under a monsoon climate, China's precipitation is unevenly distributed over the year. It receives <u>60-70% of its</u> precipitation in the rainy season (July to September).
- 2. This allows the <u>dual and frequent</u> occurrences of droughts and floods
- 3. The lack of storage infrastructures makes it highly responsive to rainfall, <u>immediate</u> <u>flood/drought with/without precipitation</u>



### **1. Shortage of Water Resources**

The monsoon climate makes precipitation in China highly unevenly distributed over its territory, with a general pattern of <u>flooding in</u> <u>the south and drought in the north</u>. c.2000-3000mm in the south, c.20-30mm in the north.

There is an evident mismatch between water and productivity, which seriously constrains socio-economic development. For example, North China supports 46% of its population with only 19% of its water resources, and it accounts for 45% of national GDP but possess 64% of total arable land.







(1) <u>Water shortage (2<sup>nd</sup> National WR</u> Assessment, 2012):

50 billion m<sup>3</sup> in normal years (75%)

c.<u>400</u> cities in shortage, c.<u>110</u> in severe shortage (661 cities in total)

(2) Water shortage not <u>only restricts</u> <u>development of economy and society</u>, <u>but also occupies environmental flow</u> and <u>degrades ecological system</u> and <u>environment</u>.





### **1. Shortage of Water Resources**





2030

7000



<40

>0.60

95%



### **Solutions: (1)**. Strengthen demand side management

**(2)** Policies for building a water-saving society since 2002

Setting up policies and regulations, for example, differentiated and tiered water pricing plays a very important role in saving water.





### Solution (2): Inter-basin water transfer

Transferring water from the Yangtze (1,000 billion m<sup>3</sup>/a) basin to the north

→ Re-allocating water according to socio-economical development





### Transferring water from the Yangtze basin to the



### **East Route**

- ♦ Source: Jiangdu, Jiangsu
- Terminus: Sandong/Tianjin
- Length of delivery: 1150km
- First-phase (by 2014) pumping capacity: 600-700 m<sup>3</sup>/s
- Since completion in Nov.
  2013, c.4.6 billion m<sup>3</sup> water to Shandong







### transferring water from the Yangtze basin to the



### **Middle Route**

- Source: Danjiangkou Reservoir
- Terminus: Beijing, Henan, Hebei
  & Tianjin
- Length of delivery: 1246km
- First-phase (by 2014) pumping capacity: 350m<sup>3</sup>/s
- In operation since Dec., 2014,
  32.6 billion m<sup>3</sup> water transferred

#### 源头: 丹江口水库 Source: Danjiangkou reservoir







### **Solution (3) : Exploring new water sources**

- Constructing of basin-scale flood control and regulation projects, and improving use of flood water by real-time forecasting and operation
- □ Increasing usage of recycled water
- **Exploring sea water desalination & usage**







- 2/3 of the territory under flood risk
- **2/3 of all cities** suffering from urban pluvial flooding



Natural features: flooding as a prominent and constant natural disaster.

**自然禀赋**:洪涝始终是中国突出的自然灾害。



### 2. Flood & Storm surge





2020 is a year of **abundant precipitation** and therefore **severe flooding**.

The Yangtze: basin scale flooding with 5 flooding events. Highest-ever records at Dongting Lake, Poyang Lake and Chao Lake. The Three Gorges Project played a crucial role in retaining flood and therefore produced significant benefit.

Huai river: Basin scale flooding; 8 retention areas were used for flood storage.

Taihu Lake: Basin scale flooding





# Increased flooding in China is found to be correlated to climate change and anthropogenic activities

| 2007 | 济南          | Jinan                                     |
|------|-------------|-------------------------------------------|
| 2010 | 广州、重庆       | Guangzhou, Chongqing                      |
| 2012 | 北京          | Beijing                                   |
| 2013 | 宁波、余姚、上海    | Ningbo, Yuyao, Shanghai                   |
| 2015 | 上海、常州、镇江、南京 | Shanghai, Changzhou , Zhengjiang, Nanjing |
| 2016 | 武汉、南京、郑州    | Wuhan, Nanjing, Zhengzhou                 |
| 2017 | 广州、长沙、重庆、南京 | Guangzhou, Changsa, Congqing, Nanjing     |
| 2018 | 北京、南京、武汉    | Beijing                                   |
| 2019 | 广州、深圳       | Guangzhou, Shenzhen                       |
| 2020 | 广州          | Guangzhou                                 |







### 2. Flood & Storm surge





#### 2013.10.8, Yuyao after Typhoon Fitow



#### 2016.6.17, Shanghai



2016.7.19, Xiamen after Typhoon Cimaron





2020.5.22, Guangzhou, Water depth: 1.65m



2020.5.22, Guangzhou after a storm



### 2. Flood & Storm surge





#### China Sea Level Bulletin (2019) :

Sea level rise is gaining pace on a global scale with an average of 3.2 mm/a between 1993 and 2019. Sea level around China, although fluctuating, is on a rising trend with an annual average of 3.4 mm, which is higher than meantime global average.





**Solution (1):** Integrated flood control and disaster relief system combining dikes, reservoirs and retention areas



The engineering components:

Reservoirs: 98,000 River Dikes: 340,000 km Sea wall: 145,000km Retention area: 98





### Solution (2): National commanding system for flood control (NCSFC)



#### **NCSFC** composure:

- Data collection
- Communication network
- Realtime forecasting
- Decision support
- Commanding and relief





A concept proposed by Xi Jinping in December 2013:

A "Sponge City" that prioritizing local retention of rainwater and relies more on natural drainage, storage and infiltration.

**Six key processes** of a "Sponge City": infiltration, retention, storage, purification, reuse and discharge







### **Priorities**

- Integrated management of urban water bodies and shorelines
- □ Flood control and drainage system
- Resource allocation and efficiency
- Protection of water resources and rehabilitation of aquatic ecology
- Prevention of soil erosion
- Water management capacity building







In cities which suffers great loss from urban flooding, if surface drainage and storage are too expensive to build, <u>large scale</u> <u>underground storage and treatment facilities</u>

are necessary, such as deep storage tunnels.



- → 调蓄容积: Storage: 165.2╳10<sup>4</sup> m<sup>3</sup>
- 对初期雨水处理,消减 70%污染 Reducing 70% of pollutants after initial processing

♦ 缓解城区内涝 Easing water logging



法国马赛中心广场地下蓄水场所 Underground flood storage tank in downtown Marseilles

On-going projects are in Shanghai, Beijing and Shenzhen, etc.





Non-engineering measures are also important components to urban flood control, including multi-dimensional monitoring, timely and accurate forecasting, dynamic and real-time risk assessment and decision support systems.







# X-band dual-polarization precipitation radars and atmospheric vapor monitoring





Radar observation
 Rain droplet size spectrum
 Per minute precipitation





**Coupled modeling of the full process of urban flooding** 



Rainfall-runoff process

Full process modelling of urban flooding





### Water pollution is a prominent and enduring problem



#### Water quality 2018 by basin

二类 (□) 🗧 三类 (□) 📕 四类 (Ⅳ) 📕 劣四类 (Ⅳ-) 一类 (I) 10080 比 60 例 % 40 20 0 辽 渤 黄 杭 闽 北 K 珠 胶 东 海 州 江 部 河 江 州 江 湾 渣 濟 渣 湾

Water quality 2018 at major estuaries

#### Shallow ground water quality 2018



Water quality classes of China

Good

Class I Class II Class III Class IV **Class V Class V-**

Heavily polluted







### **Solution (1): Source control to reduce loading**

- Reducing the use of fertilizers and pesticides, centralizing aquaculture and wastewater treatment, to reduce non-point source pollution
  Reducing compliance of inductrial offluence
- Regulating compliance of industrial effluence







### **Solution (2):** wastewater treatment and effluence compliance

Centralizing wastewater treatment and improving treatment efficiency
 Raising standards for wastewater treatment





### **Water Pollution**



### **Solution (3):** Improving hydrodynamic conditions to improve loading capacity

- Proper replenish of clean water
- Optimizing layouts for better connectivity







**Solution (4):** Technology package for ecological rehabilitation for better natural treatment

- Wetlands
- Macrophytes: for absorption of N and P
- Oxygenating water bodies









### **Solution (5):** Institutional reforms -- the River/Lake Chief System

- Directive on Full Implementation of River Chief System, State Council, Dec. 2016
- Top officials of governments at all levels act as river/lake chiefs, responsible for management & protection.
- Each river or lake falls into explicit responsible of a government official.







- 1) Unique geomorphological and hydro-meteorological conditions of China makes it highly susceptible to water scarcity, flooding, water pollution and ecological degradation, with its water security being challenged.
- 2) Global changes such as the warming climate and anthropogenic interference further endangers its water security and result in higher risks.
- 3) Water security relies on both engineering and non-engineering measures, of which the former enhances robustness of the system, and the latter develops capacities for better resilience.

NANJING HYDRAULIC RESEARCH INSTITUTE

> Thank you for your attention! Comments and questions are appreciated.

> > E-mail: jyzhang@NHRI.CN