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ON  PREDICTABILITY  OF  ELASTIC-PLASTIC  SEA  ICE   
DYNAMICS  MODELS 

Robert S. Pritchard1

ABSTRACT 
Certain viscous-plastic (VP) models are unstable during all opening deformations and 
some closing deformations. Thus, their behavior is chaotic. Attention now turns to sta-
bility of elastic-plastic (EP) models, which are used less frequently, but are useful alter-
natives to VP models, especially for shorter-term simulations. The EP model is studied 
when behavior is elastic and when stress is on the tensile cutoff cone during opening 
deformations. To analyze stability, we introduce perturbations to solutions, linearize the 
perturbation equations, introduce modal solutions to the linear perturbation equations, 
and look for modes that grow. Modes that can grow are sensitive to initial conditions 
and are therefore chaotic. This analysis shows that the EP model is stable when stress is 
within or on the tensile cutoff cone.  

INTRODUCTION 
This study has the goal of determining whether or not an EP sea ice dynamics model is 
stable. The central idea is to determine if ice dynamics models have solutions that are 
sensitive to initial conditions. If solutions are sensitive to initial conditions, then small 
perturbations to the initial conditions grow, making solutions unpredictable and inaccu-
rate. Such behavior is chaotic. Unstable models might have acceptable behavior for 
some time interval, but solutions that are similar initially will eventually diverge, which 
implies that unstable models will eventually lose predictability. Although a user might 
choose to use a chaotic model, such models require a statistical presentation of results, 
and we believe it is better to use a stable model. At a minimum, it is essential to know if 
behavior is chaotic.  

BACKGROUND 
Gray and Killworth (1995) and Gray (1999) showed that the Hibler (1979) VP model is 
unstable during uniaxial opening when the ice condition is described by the standard 
two-component approximation to the thickness distribution. Pritchard (2002) presented 
a method for analyzing model stability during general deformation states. Linearized 
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perturbation equations were introduced for generic EP and VP models. The linear per-
turbation equations were solved by introducing modes, and the growth or decay of each 
mode was determined. We take this perturbation approach here, assuming that a model 
is stable and problems are well posed if small perturbations to the initial conditions give 
rise to small perturbations to the solution, and that these perturbations decay with time 
(Schreyer, 2001).  
In Pritchard (2003), a quasi-steady form of the Hibler (1979) VP model was analyzed. 
By discarding the inertia, the momentum and VP law perturbation equations were re-
duced to algebraic constraints. Evolution of ice conditions and strength provided time 
dependent behavior, and one eigenvalue for each mode. During all opening deforma-
tions and during some closing deformations, the modes were found to grow. Thus, the 
quasi-steady VP model is not stable. More recently, Pritchard (2004) has showed that 
the fully dynamic VP model is also unstable in all opening deformations and some clos-
ing deformations. These were essential first steps toward understanding the chaotic be-
havior of the popular VP model.  

ELASTIC-PLASTIC MODEL 
The elements of an ice dynamics model are momentum balance equation, constitutive 
law relating stress and deformation, ice conditions evolution equations, and hardening 
law. The model discussed here represents only part of the complete EP model, namely, 
when stress is inside the yield surface or on the tensile cutoff cone. Thus, we do not dis-
cuss the ice condition evolution equations or the hardening law.  
Momentum Balance 
The momentum equation balances inertial, Coriolis, and tilt accelerations against the 
applied air and water stresses and divergence of the internal stress  

στ ⋅∇+=+ bv
dt
dm .                                              (1) 

The body force b(v) contains the Coriolis and water drag forces that depend on ice ve-
locity v, and τ contains air drag and sea surface tilt forces that are independent of ice 
velocity, m is mass per unit area and σ is internal ice stress resultant in excess of hydro-
static equilibrium (stress for short). The equations are expressed in a Lagrangian de-
scription where t is time, dtd  is material rate, x is spatial position, and ∇  is spatial 
gradient.  

Elastic-Plastic Constitutive Law 
Coon et al. (1974) introduced an isotropic elastic-plastic constitutive law that describes 
the large deformations observed in sea ice motions. The plasticity law assumes that the 
stress state cannot violate the isotropic yield criterion  

( ) 0,, * ≤pIII σσφ ,                                                      (2) 

where σ is stress and p* is isotropic compressive strength. The isotropic yield surface 
depends on the average normal stress 1:2

1 σσ =I  and the shear stress invariant 

''2
1 σσσ :=II , where the stress deviator is 1Iσσσ −=' . Operator: is the double inner 

product of the two second-order tensors.  
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Pritchard (1975, 1981) chose the diamond yield surface shown in Figure 1. One reason 
was that stress states on the tensile cutoff cone would be stable in the sense of Drucker 
(1959). A second reason was that the nonzero unconfined compressive strength would 
simulate arching observed across the Bering Strait (e.g., Pritchard, Reimer, and Coon, 
1979). Pritchard (1998) showed that all isotropic yield surfaces resulting from an ani-
sotropic law must lie within or on the diamond yield surface.  

 

-p* σI

σ
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Fig. 1. Diamond yield surface shown in stress invariant space 

An associated flow rule is assumed so that plastic stretching Dp is normal to the iso-
tropic yield surface  
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where λ is a non-negative scalar variable. In the figure, we use σφ ∂∂=N  to indicate 
the normal tensor. When stress is at a corner of the yield surface, the plastic stretching 
must be within the fan defined by the normal tensors to each of the surfaces through that 
stress state.  

For an elastic-plastic material, the stress satisfies a linear elastic law  

e:M && =σ  ,                                                         (4) 

where M is the elastic modulus tensor, e is the elastic strain. The overhead dot repre-
sents a material rate and here the operator : is the double inner product of the fourth and 
second-order tensors. The isotropic form of the elastic response is  

( ) e1 &&& IIIIII MeMM 2+−=σ ,                                            (5) 

where IM  and IIM  are the bulk and shear moduli, respectively, and 1:e=Ie .  

The elastic strain rate and plastic stretching are related kinematically by (Pritchard, 
1975) 

pDDWeeWe −=⋅+⋅−&  ,                                           (6) 

where D is stretching and W is spin, which are the symmetric and anti-symmetric parts 
of the velocity gradient L, respectively. These kinematic variables provide a frame-
invariant description that accounts for spin of the stress tensor at the rate of rigid body 
rotation. Here we neglect rigid body rotation, and consider only non-rotating solutions.  
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The equations can be combined (e.g., Pritchard, 2002) into a single rate type equation  

** ppep && MD:M +=σ ,                                                (7) 

where the EP modulus Mep is a fourth-order tensor and the strength modulus  is a 
second-order tensor. They are given by  
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Operator  is the outer product of tensors, which are both second order tensors.  ⊗

Three special cases are analyzed. First, stress is within the yield surface. The EP 
modulus is the elastic modulus MM =ep  and the strength modulus is zero . 
Second, stress is on the tensile cutoff cone. The strength modulus tensor is zero 

. Third, stress is at the origin σ = 0. The modulus tensors are zero  and 

.  

0M =*p

0M =*p 0M =ep

0M =*p

STABILITY ANALYSIS 
Each primary solution variable is perturbed, and the equations governing the perturba-
tions are derived. The perturbation equations are linearized about the solution. These 
linear equations are solved by the usual modal analysis. To do so, we consider locally 
uniform solutions so that the partial differential equations have constant coefficients. 
The modal solutions are spatial trigonometric functions (an infinite set of complex ex-
ponentials Lkie xn⋅ ). Thus, the velocity and stress perturbations are assumed in the form  

( ) ( ) xnxnv
vv

⋅∧⋅∧
σ=σ= L

ik
L
ki

etet , ,                                    (9) 

where k is an integer index, n is an arbitrary unit length direction vector, and L is a 
length scale. Each spatial eigenvector is multiplied by a time-dependent coefficient that 
is determined as the solution of a system of ordinary differential equations. We analyze 
this set of ordinary differential equations to learn if modes grow or decay when external 
forcing is zero.  

Momentum Balance Perturbation Equation 
The momentum balance perturbation equation satisfies (Pritchard, 2002, 2004)  

∧∧∧
∧

σ⋅∇+τ=⋅′+ vbv
dt
dm ,                                              (10) 

where water stress is a quadratic function of ice velocity and  
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The operator 
2

πB  describes rotation counterclockwise through ninety degrees and Bw 

through angle β. Water density is ρw and drag coefficient is Cw. Ocean current is ne-
glected.  

The modal coefficients are related by the vector ordinary differential equation  

( ) ( ) 0nvbv
=⋅⎟

⎠
⎞

⎜
⎝
⎛+⋅′+ σ

L
ki

dt
idm ,                                    (12) 

where the applied body force  is ignored because we seek non-trivial solutions to the 
homogeneous equations.  

∧
τ

Elastic-Plastic Constitutive Law Perturbation Equation 
It is customary in solid mechanics (e.g., Schreyer, 2001) to neglect the dependence of 

 on the stress tensor. Substituting the normal modes for velocity and stress gives  epM

( vn:M i
L
k

dt
d

ep ⊗⎟
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⎝
⎛=

σ ) ,                                           (13) 

since the strength modulus term in equation ( 7) is zero for the three cases analyzed here. 
Symmetry of the elastic-plastic modulus with respect to its last two indices allows us to 
avoid writing the full symmetric form for D .  

Since the stress modal coefficient appears in the momentum balance perturbation equa-
tion ( 12) only in the combination n⋅σ , we can form that term as  

( ) ( )vAn i
L
k

dt
d

ep ⋅⎟
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⎞

⎜
⎝
⎛=

⋅σ ,                                           (14) 

where  

nMnA ⋅⋅= epep ,                                               (15) 

is the elastic-plastic acoustic tensor. Symmetry of the first two indices of  allows us 
to write the tensor in this form.  

epM

Differentiating equation ( 12) with respect to time and substituting equation ( 14), we can 
rewrite the ordinary differential equations in terms of the velocity modal coefficient as  

( ) ( ) ( ) 0vAvbv
=⋅⎟⎠

⎞
⎜⎝
⎛+⋅′+ i

L
k

dt
id

dt
idm ep

2

2

2
.                                (16) 

We note that the solution state is assumed constant for the stability analysis. This equa-
tion has solutions of the form  

( ) tet κ−= 0vv ,                                                      (17) 

where  are coefficients of the initial perturbation, and decay rate 0v κ  is the negative of 
the Lyapunov coefficient. Comparing equations ( 9) and ( 17) shows that the initial per-
turbation has been expanded in the trigonometric series Like xnv ⋅

0 . The same eigenvec-
tors are found for the traction n⋅σ .  
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Elastic-Plastic Characteristic Equations  
The characteristic polynomial results from substituting equation ( 17) into ( 16) and set-
ting the determinant of coefficients to zero. Thus,  

0
2

2 =⎟⎠
⎞

⎜⎝
⎛+′− epL

km Ab1 κκ .                                       (18) 

This characteristic equation is a fourth order polynomial in κ . Since coefficients are 
real, roots must be real or complex conjugate pairs. We evaluate roots numerically for a 
full range of values of each parameter. For large wave numbers ( ), the acoustic 
tensor term dominates the body force term. Then the decay rate is proportional to k and 
determined from the eigenvalues of the acoustic tensor.  

∞→k

Three Special Cases  
We analyze the three constitutive laws: elastic, elastic-plastic on the tensile cutoff cone, 
and stress at the origin. These cases represent the beginning steps for analyzing a com-
plete EP model.  

Stress States within Yield Surface (Elastic). The perturbation to equation ( 5) is (replace 
elastic strain rate with the stretching tensor when elastic)  

( )
∧∧

∧

+−=
σ D1 IIIIII MDMM

dt
d 2 .                                      (19) 

Substituting normal modes and expanding their derivatives give  

( ) [ ] ( )v1nnn iMM
L
k
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d
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⋅σ .                                (20) 

Thus, by equation ( 14) the elastic acoustic tensor is  

1nnA IIIe MM +⊗= .                                               (21) 

This form can be used directly in the characteristic polynomial. The eigenvalues of  
are 

eA

III MM +  and IIM . Thus, if body forces are neglected ( 0b =′ ), then roots of the 
characteristic polynomial are ( ) mMMi III +±=κ  and mMi II±=κ , which is the 
desired classical mechanics result. Since they are purely imaginary, the modes propa-
gate at the dilatational and shear wave speeds without decay.  

The zero mode (k=0) is not affected by the constitutive law. Two roots are zero, and 
two are complex conjugates that depend on ice speed. The real part of the nonzero 
roots satisfies  

( ) βρκ cos||
2
3Re vwwCm = .                                           (22) 

They are positive so the zero mode is stable.  
In Figure 2 real parts of the characteristic roots for the first elastic mode ( ) are 
shown. They are positive and the mode is stable. For all cases analyzed here, we have 
plotted the real parts of all roots versus ice speed. At each speed, we have calculated the 
roots as functions of velocity direction 

1=k

δ  and the orientation vector direction α . Many, 
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if not most, of these solutions are identical. Only a few distinct values at each speed ap-
pear in the solutions. All roots near zero are in fact positive as can be seen by applying 
the Routh-Hurwitz Condition (e.g., Fisher, 1999).  
As the mode number increases to k=10, two pairs of complex conjugate roots exist 
(Figure 3). Both are always positive so the mode is stable. These roots approach each 
other because the body force term in equation ( 18) is smaller than the inertia or the 
acoustic tensor term. As k increases, the complex conjugate pairs approach each other, 
and all real parts become identical.  
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Ice Speed (m/s)  
Fig. 2. Real root parts for first elastic mode (k=1)  

For zero velocity of all modes, the linear and cubic coefficients are zero. This case fails 
the Routh-Hurwitz Condition, but the characteristic polynomial reduces to a quadratic 
polynomial in 2κ . The square root of any complex (or real) number must be mapped 
into the positive half of the complex plane, so the desired roots κ  must have positive 
real parts. Thus, the elastic model is stable. When ice speed is not zero, the characteris-
tic polynomial satisfies the Routh-Hurwitz Condition so all roots are positive.  
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Fig. 3. Real root parts for tenth elastic mode (k=10) 

Stress States on Tensile Cutoff Cone. On the tensile cutoff cone, the stress state satisfies 

III σ+σ=φ ,                                                     (23) 

which is independent of strength p*. This precludes the stress state from being at the 
shearing corner because opening there would cause weakening and dependence on . 
For the present analysis, we simply assume that 

*p
φ  is independent of strength.  
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The elastic-plastic modulus can be derived for isotropic yield surfaces by using equation 
( 3) and ( 5) and the fact that, for the tensile cutoff cone, the partial derivatives are  

1=
∂
∂

=
∂
∂

III σ
φ

σ
φ

.                                               (24) 

Thus, for these stress states  

II
III MM
σ

+=
∂
φ∂ 'σ
σ

1:M                                           (25) 

After substituting the elastic-plastic modulus into equation ( 15) and using ( 25), the EP 
acoustic tensor becomes  

III
eep MM +

⊗
−=

TTAA ,                                          (26) 

where  

( )
II

IIIII MMM
σ
⋅

++=
nnT σ

.                                    (27) 

The vector T depends only on the direction of principal stress γ  through IIσ⋅nσ  and 
the unit length orientation vector n. Therefore, roots of the characteristic polynomial 
( 18) depend on velocity v through b′ , direction of principal stress, orientation vector 
direction, mode number Lk , and material properties such as elastic moduli IM  and 

 and mass density m.  IIM

The zero plastic mode is the same as the elastic case, which has perturbation roots given 
by equation ( 22). Roots of the first elastic-plastic mode is presented in Figure 4. Al-
though there are more distinct roots, the general trends are similar to the first elastic 
mode shown in Figure 2. The real parts of all roots are positive so the mode is stable. 
For the tenth plastic mode, roots are presented in Figure 5. This mode is more compli-
cated than any presented previously, but the crucial fact is that all roots have positive 
real parts. As with the elastic cases, all plastic modes satisfy the Routh-Hurwitz Condi-
tion. Thus, roots near zero are positive. When ice speed is zero, two coefficients are 
zero, which violates the Routh-Hurwitz Condition, but a separate analysis proves this 
case to have positive roots. Thus, all plastic modes are stable.  
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Fig. 4. Real root parts for first plastic mode  
(k=1) 

Fig. 5. Real root parts for tenth plastic mode 
(k=10) 
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Stress State at the Origin. When stress is at the origin (σ = 0) for a finite period, it also 
has zero stress rate ( ). Thus, from equation ( 4), the elastic strain rate is zero 
( ), and from equation ( 6), still neglecting rigid body rotations, D

0=σ&
0e =& p = D. If we com-

bine all equations into the single rate equation, the elastic-plastic modulus to be zero 
( ). The acoustic tensor given by equation ( 15) is also zero ( ). The 
model is therefore the same as the zero mode, which has perturbation roots given by 
equation ( 22). These complex roots imply that the perturbations oscillate in time, but the 
decaying real part ensures stability.  

0M =ep 0A =ep

CONCLUSION 
We have showed that an EP model is stable if the yield surface is described by a tensile 
cutoff cone. This is one step toward learning if the EP model is stable for all solution 
states. We have begun this study by focusing on the tensile cutoff cone because plastic 
failure during opening is the condition most likely to be unstable. More work is needed 
to analyze the EP models when stress is on the compressive cap and strength can change 
during the deformation. That analysis will require that strength be included in the set of 
variables, increasing the dimension of the solution perturbation space. We should also 
include effects of allowing the elastic-plastic modulus  to vary as a function of 
stress, which also increase the dimension of the solution perturbation space because 
three stress components must be included.  

epM
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NUMERICAL  MODELLING  OF  ICE  INTERACTION  WITH 
RUBBLE  MOUND  BERMS  IN  THE  CASPIAN  SEA   

A. Barker1 and K. Croasdale2

ABSTRACT  
Numerical modelling of sea ice is a useful tool in predicting ice rubble formation around 
offshore and coastal structures. Such models can capably predict rubble height and ex-
tent, allowing engineers to pinpoint “problem” scenarios for structures where ice inter-
action, and its potential for extensive damage, is a concern. This paper describes nu-
merical simulations that were conducted to examine floating ice interaction with a struc-
ture located in the Caspian Sea and its planned surrounding protective rubble mounds. 
Spatial and temporal distributions of ice rubble pile-up height and depth, as well as 
forces on the mounds, were determined. The numerical model examined a number of 
different rock mound configurations, the influence of the direction of ice movement and 
ice sheet thickness. The results are compared with reported pile-up heights, collected 
from the field site.  

INTRODUCTION 
This objective of this paper is to summarize the findings of a numerical model that was 
used in conjunction with field work and laboratory tests to examine design options for a 
drilling site in the Caspian Sea. The paper also gives an overview of full-scale condi-
tions for comparison purposes. The numerical model examined floating ice interaction 
with a barge-type structure and the rock mounds that were to be constructed around it, 
as part of a contract that the Canadian Hydraulics Centre (CHC) of the National Re-
search Council of Canada carried out for the Agip Kazakhstan North Caspian Operating 
Company NV (AGIP KCO, formerly OKIOC) (Sayed and Barker, 2000). The problem 
that was to be studied corresponded to design options for an exploration-drilling struc-
ture in the Kazakhstan sector of the north Caspian Sea (see Figure 1).  

The structure, called the Sunkar, is 85 m by 55.5 m. Rubble mounds, along the long 
axis, were at one point considered as protection for the Sunkar from moving ice, al-
though this layout was subsequently discarded. Numerical simulations were conducted 
in order to determine, for each design option, the expected ice pileup geometries, ice 
                                                 
1 Canadian Hydraulics Centre, National Research Council of Canada, Ottawa,ON, K1A 0R6 Canada 
2 K.R. Croasdale & Associates Ltd., 2120, 720, 13th Avenue S.W. Calgary, AB, Canada T2R 1M5 
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rubble grounding, and forces on the rock mounds and structure. Several options for the 
layout and dimensions of the mounds were examined. The data from these simulations 
were then compared with ice measurements taken the following season by K.R. Croas-
dale and Associates, in response to a tender issued by AGIP KCO for an ice research 
and measurement programme for the North Caspian Sea (Croasdale, 2001).  
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Fig. 1. Regional map of Caspian Sea (from Croasdale, 2001) 

PARTICLE-IN-CELL NUMERICAL MODEL 

Model Description 
A Particle-In-Cell (PIC) numerical model developed at the CHC has been used success-
fully to deal with a number of ice-structure interaction issues (Sayed et al., 2000; Barker 
et al., 2000; 2001a; 2001b). The numerical model uses a continuum rheology that fol-
lows a Mohr-Coulomb plastic yield criterion. An assembly of discrete particles repre-
sents the ice cover. The governing equations consist of the continuum equations for the 
balance of linear momentum and the plastic yield criterion. Those equations are solved 
using a fixed grid. Advection and continuity, on the other hand, are handled in a La-
grangian manner. An implicit finite difference method is used, based on uncoupling the 
velocity components and a relaxation iterative scheme. Each particle has a fixed vol-
ume, and is assigned an area and a thickness. At each time step the velocities are inter-
polated from the grid to the particles. Thus, particles can be individually advected. From 
the new positions, values of particle area and mass are mapped to the grid. The resulting 
ice mass and area for each grid cell are then used to update ice thickness and concentra-
tion. Solution of the governing equations can then be carried out using the fixed grid. 
Updated velocities and stresses on the fixed grid are obtained from the solution. Both 
three dimensional and depth-averaged implementations of the model were used in this 
paper; the latter averages the values of stresses and velocities over the thickness. Thick-
ness variations, however, are accounted for. As stresses exceed a threshold, representing 
a ridging stress, each particle undergoes ridging; i.e. the thickness increases and area 
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decreases, while conserving ice volume. Further details about the model may be found 
in Sayed and Carrieres, 1999. 

Test Set-Up 
The numerical model was used to investigate floating ice interacting with the Sunkar, 
and its surrounding protective rubble mounds.  The simulations that were performed for 
AGIP KCO consisted of two base cases each with sensitivity and three-dimensional 
runs. The first base case looked at one rubble mound along the east side of the structure, 
and another mound along the west side of the structure.  For the second base case, two 
mounds (separated by a gap) were placed along the east and west sides of the structure.  
Figure 2 shows the general layout.  Runs were conducted using different values for the 
direction of ice movement, distances between the structure and mounds, and gap be-
tween the mounds.  The effects of changing the freeboard and width of the mounds were 
also examined.  The output of each run gave the extent and spatial distribution of rubble 
pileup sail height and keel depth in front of the mounds and the structure. The spatial 
distribution of grounding was also given. The forces on the mounds and the structure 
were determined. Overall, thirty-three runs were completed. 

 
Fig. 2. General test layout for the test cases. The second case (right) had two mounds on either side  

of the barge, with a gap of various widths, rather than the single berm of the first case (left) 

The ice thickness used in the runs was usually either 0.05 m or 0.15 m. These relatively 
small thickness values were chosen as the predominant thickness during the freeze-up, 
when it was anticipated that most of the pile-up activities would take place. The ice had 
a constant ice velocity of 0.5 m/s. The water depth was 4 m, with a 1 m freeboard for 
the rubble berms. The rubble berms were to have 1:3 slopes (18° from horizontal). An 
angle of internal friction of 30° was appropriate for modeling the depth-averaged behav-
iour (as established in previous studies; e.g. Sayed et al. 2000). A number of boundary 
conditions were used, depending upon the test run configuration. The boundary condi-
tions could include full-slip (ice velocity parallel to the boundary), prescribed velocity 
(to drive the ice cover) or stress-free (used downstream of a structure) conditions. The 
environmental driving force on the ice sheets was applied via a water drag coefficient, 
between 0.5 and 1.5 depending on the ice thickness. The lower value corresponds to a 
maximum applied shear stress of approximately 1.25 kPa exerted on stationary parts of 
the ice cover. These values are in accordance with observations of ice jams (Beltaos, 
1995). Overtopping of the rubble mound structures was not permitted, although addi-
tional tests did examine this scenario. Those simulations showed that ice pileup would 
not overtop a mound with 1 m freeboard. For a lower freeboard of 0.5 m, a pileup would 
spill some ice rubble on the top of the mound, but all rubble is stopped in front of the 
mound. Therefore, the structure remained protected. 
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Summary of test results 
The spatial distribution of ice rubble pileup showed that almost all of the pileup occurs 
against the East mound (Figure 3). The structure and West mound were sheltered from 
the ice and forces there were negligible. Pileup against the East mound appeared to form 
in rings. Once a maximum thickness (height and depth) were reached, the pileup ex-
tended outwards, upstream. The pileup grounded on the slopes of the mound and sea-
bed. Forces on the mounds were calculated by integrating the normal stresses acting di-
rectly on the mound and grounding shear stresses. The forces on the structure were cal-
culated by integrating the normal stresses at its interface with the ice. The resulting 
maximum pressure of 2 kN/m is in accordance with observations (Masterson, 2000). 
The total force on the mound was approximately 90 kN, which was, as expected, rela-
tively low. For a quantitative description of the pileup, the sail height and keel depth 
were plotted along several cross-sections; an example is shown in Figure 4. The sensi-
tivity runs for Case 1 gave quantitative estimates of the effects of changing ice direc-
tion, mound length, and separation distance between the structure and the mound. The 
direction of ice movement obviously influenced the effectiveness of rubble mounds to 
protect the structure. The effect of the separation distance became pronounced with in-
creasing angle of ice movement direction. The larger separation exposed the structure to 
more ice action. Increasing the length of the mound increased the protection of the 
structure, particularly for oblique angles of ice approach and larger separation distances.  

 
Fig. 3. Ice interacting with a rubble berm.  The Sunkar is on the left hand side 
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Fig. 4. Cross-sectional view of development of sail and keel thicknesses over time.  
Note the grounding and steep angle of repose 

For the second case, at the early stages of the run, pileups formed in front of both East 
mounds. The ice sheet also passed through the gap between the mounds and a pileup 
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developed against the structure. As the pileup against the structure grew, it reached the 
gap, which eventually filled with grounded ice. Afterwards, a single grounded pileup 
developed in front of the both the East mounds. Once this occurred, the two adjacent 
mounds acted as a single large mound, which provided shelter for the structure. With a 
larger ice sheet thickness, the pileup formed and grounded in the gap between the 
mounds. For a larger separation distance between the mounds and the Sunkar, the pileup 
in front of the structure obviously took longer to reach the gap. Increasing the angle of 
ice movement (from the x-direction to an oblique angle) was shown to expose larger 
parts of the structure to ice action. Also, the gap between mounds appeared to block ear-
lier. The latter result is expected since the projected gap width normal to ice movement 
would be smaller. The larger gap and the corresponding smaller mound length produced 
pileup in front of each mound and the structure. The larger separation distance exposed 
the structure to increased ice action. In cases where the gap was greatest, the gap did not 
become blocked. Additionally, a run was done to examine the stability of an existing 
grounded pileup under the action of a moving ice sheet. The results showed that the 
grounded pileups did not move under the action of the moving ice sheet. Instead, a new, 
grounded pileup formed on the South sides of the existing pileup and the structure. Only 
a small part of the initial pileup, west of the mounds, that was not firmly grounded was 
cleared by the moving ice sheet.  

MEASURED FULL-SCALE FEATURES 
The full-scale data was collected in February 2001 (Croasdale, 2001). The main focus 
of the project was to examine grounded ice rubble and ridge features. The measure-
ments that were collected that pertain to this paper included ridged and rafted ice thick-
ness and geometry, ice pile-up geometry and block size distribution and other measure-
ments concerning sea water and ice properties. Overall, fourteen features were surveyed 
over the course of the month. General descriptions for each feature are shown in Table 1. 
With respect to the ice conditions in the area of the drill site, ice is generally present from 
December to March, with a mean level ice thickness ranging between 0.3 m to 0.5 m. 
The water depth is quite shallow (the water depth in the study area is 4 m), with a deep-
est depth of approximately 10 m. Ice ridging and rafting occur frequently in the area, 
with keels scouring the seabed in the case of the former. A photograph of one of the fea-
tures is shown in Figure 5. Table 1 lists the sail and keel measurements, water depth and 
level ice thickness for each feature, as well as some other pertinent details, where avail-
able. Feature 14 is omitted, as it was a sounding at various locations. The average sail 
(pile-up) height of the observed features was 3.3 m, with a maximum height of 6.6 m. 
The average thickness of the surrounding ice sheet was 0.33 m. The water depth varied 
from 2.0 to 5.9 m, and most of the features had grounded on the seabed. Croasdale 
(2001) discussed that it appeared that ice pile ups in the Caspian could be higher than 
other regions (for the same ice thickness), which he attributed to the shallower water 
and reduced ice friction between ice blocks due to lack of snow. 

COMPARISON WITH FULL-SCALE DATA 
A direct comparison between the full-scale data and the numerical results is difficult, 
given that most of the full-scale features were not generated due to interaction with a 
structure such as the Sunkar. Nevertheless, it is possible to compare the results by exam-
ining the relationship between the surrounding level ice thickness and the generated 
pile-up height. Figure 6 shows two views of ice that did, however, interact with the pro-
tective piles that were used at one point to shield the Sunkar. As can be seen in this figure 
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and Figure 5, the pile-ups could be quite steep. This was also observed in the numerical 
results, as shown in Figure 4. 
 

 
Fig. 5. Photo of typical feature surveyed in the Caspian Sea (Croasdale, 2001) 

Table 1. Details of full-scale features surveyed in Caspian Sea (after Croasdale, 2001) 

Feature 
Number 

Feature 
Length 

Feature 
Width hsail hkeel hwater hlevel ice

Dominant 
ice 

thickness 
at pile-up 

Comments 

 m m m m m m m  
1 na na 3.0 na 2.0 0.23  Rubble pile 

2 150 50 6.6 2.6 2.6 0.35 0.30 Grounded ridge/rubble 
pile  

3 30 25 3.0 2.5 2.5 0.32  Rubble pile within 1 km of 
Feature 2 

4a 80 20 3.2 2.0 2.0 0.35  Series of ridges 
4b 50 20 3.6 2.0 2.0 0.35  Series of ridges 
5 na na 3.2 3.5 3.5  0.13 Series of ridges 
6 na na 3.7 3.5 3.5  0.19 Series of ridges 
7 na na 1.6 3.7 3.8 0.40 0.16 Series of ridges 

8 na na na na na 0.38  Sonar survey south of 
(east) piles 

9 90 60 5.5 4.3 4.3  0.20 Exposed rock berm 
10 30 10 2.1 2.0 2.0  0.07 Rubble pile near Aktote 

11 10 10 0.5 2.0 2.0 0.3  Rafted ice/floating ridge 
area 

12 >1000 50-200 5.6 5.9 5.9  0.17 
Newly formed grounded 
ridge and rafted ice ~ 8km 
from Sunkar 

13 65 50 0.5 5.8 5.8 2-3 
(rafted)  Rafted ice floes in front of 

ridge 

14        
Ice thicknesses and 
soundings on line from 
Aktote to shore 

Croasdale (2001) plotted the relationship between the ice thickness and the pile-up 
height for a number of the surveyed features (Figure 7). The plot shows good correla-
tion between dominant ice thickness and pile-up height. A similar chart was created that 
included data points from a large number of geographic areas, as well as the Caspian 
full-scale and numerical results. This plot is shown in Figure 8. The Caspian data is on 
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the low-end of the measured ice thickness data. In this region, it can be seen that there is 
a moderate amount of scatter in the pile-up heights encountered with thin ice. However, 
both the full-scale and the numerical results fall in with data from other geographic re-
gions. Note that there are numerous pile-up thicknesses for the numerical results for 
each ice thickness, due to multiple test runs with different configurations in the paramet-
ric study. 

SUMMARY 
The preceding paper describes ice rubble pileup geometries and forces due to an ice 
sheet impinging on a structure protected by arrangements of rock mounds, and the asso-
ciated full-scale data for comparison purposes. The chosen driving force and material 
parameters produced the expected pileup thickness. The maximum grounded thickness 
was approximately 10 m, with a corresponding pileup height of 6 m in 4 m of water. 
This result is in agreement with the range observed in the Caspian (Spring, 2000, 
Croasdale, 2001), and other locations in the Arctic under relevant conditions. 
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Fig.6. Two views of pile-up occurring at piles used to shelter the Sunkar drilling barge (Croasdale, 2001) 
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MODELLING  ICE  RUBBLE  WITH  PSEUDO-DISCRETE   
CONTINUUM  MODEL  

S. Shafrova1,2, P. Liferov2,3 and K. Shkhinek4 

ABSTRACT 
A pseudo-discrete continuum model was developed to study the breakage of the initial 
rubble skeleton. A special program was developed to generate a random assembly of 
rectangular blocks in a closed shape allowing to vary the block size and the resulting 
porosity of the assembly. The obtained assemblies were further used as geometrical in-
put for the finite element model. The blocks were modelled as elasto-plastic bodies, 
contact elements were used to simulate the reduced strength at contacts between the 
blocks. Direct shear test simulation on the ice rubble were performed. The effect of the 
mechanical properties of the ice blocks and their contacts was investigated by applying 
different boundary conditions to assembly of the blocks.  

INTRODUCTION 
Several testing program on ice rubble mechanical properties have been done. Both labo-
ratory and in-situ tests were performed. The results by Ettema and Urroz (1989, 1991) 
and Timco and Cornet (1999) confirmed that it is possible to describe ice rubble behav-
iour by elastic-perfectly plastic model, i.e. Mohr-Coulomb yield criteria. 

Several methods to estimate the loads from ice ridges on offshore structures have been 
developed, both analytical and numerical models.  

In the analytical approach the major difficulties are connected with the two-parametric 
Mohr-Coulomb failure criterion. The material properties (friction and cohesion) are not 
easy to determine. The cohesion term is mainly a function of freeze bonds between the 
ice blocks. Such bonds are broken at the initial stage in any interaction (Urroz and Et-
tema, 1989). The full frictional component cannot be mobilized until significant motion 
on failure plane has taken place. Thus, it is unlikely that frictional and cohesion terms 
                                                 
1 University Centre on Svalbard, Longyearbyen, Norway 
2 Norwegian University of Science and Technology, Trondheim, Norway 
3 Barlindhaug Consult AS, Tromsø, Norway 
4 St. Petersburg State Polytechnical University, St. Petersburg, Russia 
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will act simultaneously. Several assumptions and simplifications were done and ice rub-
ble was often treated either as frictionless or as cohesionless material.  

Numerical approaches used Finite Element (FE) and Discrete Element (DE) models that 
can describe the behaviour of ice rubble. Recently only few FE based modelling was 
conducted by Heinonen, (2002, 2003) and Liferov et al., (2002, 2003). Punch tests were 
simulated in these models. The ice rubble was treated as a continuum and homogenous 
medium.  

Discrete Element simulations by Hopkins and Hibler (1991) were done to study the be-
haviour and strength of ice rubble in the direct shear box. The freeze-bonding effect was 
neglected in these simulations. But it was suggested that a model of freeze-bonding 
might be used to explore various forms that such mechanism might take. 

A pseudo-discrete continuum model, which simulates the initial breakage of the rubble 
skeleton, is described in this paper. The ice rubble was considered as discrete material 
and the effect of freeze bonds between individual ice blocks was taken into account. 
The model description and results of direct shear-box simulations are presented. 

PSEUDO-DISCRETE CONTINUUM MODEL 

General description 
The pseudo-discrete continuum model of ice rubble is a combination of the discrete par-
ticle assembly generation (i.e. ice rubble accumulation) and the FE analysis of this as-
sembly. The primary goal for developing such model was to study numerically the ini-
tial failure mechanism of ice rubble. This model provides a possibility to simulate the 
contacts between the ice blocks and their local failure. 

The modelling procedure consists of two basic steps. First, the assembly of blocks is 
generated. The block generator tool was developed to fulfill this task. In the second 
step, the generated assembly is used as a geometrical input for the FE analysis to study 
its behaviour under loading at the different boundary conditions.  

Generation of discrete block assembly 
Generation of the discrete block assembly was conducted in the custom-developed 
computer program called the block generator. This program fills the closed contour with 
blocks of rectangular shape. The blocks themselves are considered as solid bodies. Ge-
ometry of each block is defined by its centre of gravity xc, yc and four vertices. The as-
sumed porosity of assembly is used to calculate the number of blocks needed to fill the 
area. In the process of generation it is possible to define the area within a contour (by 
means of top and bottom control lines) to estimate its effective porosity. The direction 
of gravity is specified by the attraction line that can be given different locations within 
the contour throughout the simulation. Fig. 1 shows a typical interface view of the pro-
gram during a simulation run. Detail description of the block generator is beyond the 
scope of this paper. 

Finite element model 
The generated assembly of ice blocks was used as a geometrical input for the FE analy-
sis. It was conducted using the Plaxis FE code (Plaxis, 2002). The FE model of the ice 
rubble is shown in Fig. 2. 
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Fig. 1. Block generation in progress 

 

 

Fig. 2. The direct shear box  
(σ is the normal pressure, τ is the horizontal pressure). 

The model consists of: 
The ice blocks. They were assigned an elastic-perfectly plastic Mohr-Coulomb material 
model. It is a constitutive model with a fixed yield surface, i.e. a yield surface that is not 
affected by plastic straining. The yield surface thus always coincides with the failure 
surface that is defined by six yield functions of the following form when formulated in 
terms of principal stresses σi, σj: 

( ) ( )i jF a N aσ σ= + − + , (1) 

where the following state parameters are used: N = (1 + sinφ) / (1 - sinφ), φ is the angle 
of internal friction, a is the attraction (a = c/tanφ), c is the cohesion. For c > 0, the stan-
dard Mohr-Coulomb criterion allows for tension. However, the ice normally sustains 

σ

τ  
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smaller tensile stresses than those defined by the standard form of the failure criterion. 
In order to account for this, three additional yield functions are introduced: 

i tF σ σ= − and 0 t aσ≤ ≤ , (2) 

 where σt is the tensile stress of ice. 
The contacts between the blocks. They were modelled using the interface elements.  
Fig. 3 shows the close-up of contacts between ice blocks in the rubble (with the mesh 
on). The interface element shown in the figure to have a finite thickness, but in the FE 
formulation the coordinates of each node pair are identical, which means that the ele-
ment has a zero thickness. Each interface has assigned to it a ‘virtual thickness’ which is 
an imaginary dimension used to define the material properties of the interface.  
 

 
Fig. 3. Ice blocks in contact 

 

The length of contacts between the blocks is assumed to be a variable parameter. For the 
initial step the contact length is established to have a minimum value which can sustain 
the applied load combination. In case of smaller values the material fails during con-
struction stage under compression, which operated by normal pressure. Thus the contact 
lengths have to be increased for the further simulations. 
The strength properties of the interfaces are linked to the strength properties of the ice 
blocks via the strength reduction factor for interfaces Ri as follows: 

i ic R c= ⋅ and tan tani iRϕ ϕ= ⋅  (3) 
The voids between the blocks. They were modelled using elastic material with a negligi-
ble stiffness. This was done to avoid mesh problems - use of elastic material instead of 
leaving voids “empty”. Verification was conducted on identical models with and with-
out elastic material in the voids to prove that it doesn’t affect the results. 
The quasi-static approach was used in the simulations. The ice rubble was modelled as a 
weightless material, i.e. initially the rubble was unloaded. Iterative calculations were 
carried out until the overall stiffness of the material approached zero (or resistance to 
loading began to decrease). This was an indication of complete breakage of the initial 
rubble skeleton. 

NUMERICAL EXPERIMENTS 

Direct shear box 
The apparatus simulated in this set of numerical experiments is the two-dimensional di-
rect shear box that is shown in Fig. 2. The inner length of the shear box is 6 m and the 
depth is 3 m. Load controlled deformation was applied to the upper part of material. The 
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lid was free to move vertically in order to balance the normal confining pressure σ ap-
plied to its upper surface. The horizontal pressure τ was then incrementally applied to 
move the upper part of the shear box. The ice rubble used in the experiments was made 
up of rectangular blocks. Table 1 presents the characteristic parameters for the ice 
blocks that were chosen according to Kämärinen, (1993).  

Table 1. Ice block properties 

Property Value Property Value 
Length, m ~ 1.0 Angle of internal friction, º 0-30 (var.) 
Thickness, m ~ 0.3 Tensile strength, MPa 0.2 
Young’s modulus, GPa 4.5 Porosity, % ~ 33 
Poisson’s ratio 0.3 Amount of blocks,  ~ 40 
Cohesion, MPa 0.5   

Parametric analysis  
A series of numerical tests were conducted with the direct shear box. The parametric 
study was performed in order to investigate the effect of mechanical properties of the 
ice blocks and their contacts on the strength of ice rubble skeleton. In addition the influ-
ence of normal pressure on the ice rubble strength was analyzed. The following parame-
ters were assumed to be variable during the numerical experiments: 
• strength reduction factor for interfaces - Ri; 
• normal pressure – σ; 
• angle of internal friction - φ; 
• length of the contacts between ice blocks or contact area - A. 
It was observed during simulation that initial failure of the ice rubble corresponds to 
breakage of the contacts between ice blocks. Therefore the initial strength is controlled 
by freeze bonding mechanism between separate blocks inside the ice rubble. The cohe-
sion seems to be a major contributor to the bearing capacity of the ice rubble. Some lo-
cal breakage of the individual ice blocks was also observed during simulations.  
Influence of strength reduction factor  
The shear strength τ versus strength reduction factor Ri for two different values of angle 
of internal friction is presented in Fig. 4. The normal pressure is assumed to be a con-
stant and equal to 5 kPa.  

0
2
4
6
8

10
12
14

0 0.05 0.1 0.15 0.2 0.25  

Fig. 4. Shear strength versus strength reduction factor, σ = 5 kPa 
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The shear strength increases almost linearly with increasing strength of the interface 
elements. It is clearly shown in Fig. 4 that initial failure is independent of φ. Thus 
strength of the ice rubble is largely dominated by cohesion and tensile strength of 
freeze-bonds. 

Weiss et al. (1981) have proposed that effective cohesion of ice rubble, c, may be pro-
portional to the thickness of ice blocks, t, which form the rubble. They indicated the fol-
lowing relationship: / 16 8 /c t kPa m= ± . Bruneau (1997) conducted analysis of several 
ice rubble shear strength laboratory test and reported the following: / 17 /c t kPa m= . In 
the following we assume the average c/t value is about 20 kPa/m. Thus for present 
simulations of 0.3 m thick ice blocks c is expected to be about 6-7 kPa.  

Ettema and Schaefer (1986) conducted a series of experiments on freeze-bonding be-
tween ice blocks. They reported that the shear strength of freeze-bond is about 1-5 kPa 
for small-to-medium scale tests. The ice blocks with contact area of 4.52 x 10-3 m2 and 
9.03 x 10-3 m2 were used during these experiments that correspond to 9.5 x 4.75 cm and 
13.4 x 6.70 cm block size respectively. The scaling of these results coincides with simu-
lation data in Fig. 4. The curves show that shear strength is in the range of 5-7 kPa for 
the strength reduction factor from 0.08 up to 0.1, that corresponds to 40-50 kPa for the 
freeze-bond shear strength. 

Influence of contact area  

Fig. 5 shows a plot of shear strength τ versus total contact area A between the ice blocks. 
The normal pressure is assumed to be a constant and equal to 5 kPa. The strength reduc-
tion factor is chosen as 0.09 that is a freeze bonding strength of 45 kPa.  

For the range of contact area used in the present study, the shear strength of the ice rub-
ble is linearly increased with increasing of contact area. The simulation indicated that 
length of contacts or contact area between ice blocks A, has a great influence on the 
shear strength. This prompts that results depend significantly on block size and position. 
Table 2 shows the typical values of the average length of the contacts between the ice 
blocks in relationship with the total contact area.  
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Fig. 5. Shear strength versus contact area, σ = 5 kPa, φ = 30º 
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Table 2. Typical values of contacts between ice blocks as given by the block generator 

Total contact area A, m2/m  Average length l , m 

7.57 0.122 ± 0.085 

9.31 0.150 ± 0.087 

12.15 0.196 ± 0.092 

14.74 0.238 ± 0.120 

Additionally it was found that the total amount of blocks N and the inclination angles of 
contacts θ are very important as well. For the present simulation series the total amount 
of contacts was in narrow range of 60-62. It was also observed that θ is one of the con-
tributors, which determined the failure mechanisms between the ice blocks and there-
fore has influence on the shear strength.  

Influence of normal pressure  
For the range of the present analysis shear strength τ increased non-linearly with in-
crease of normal pressure σ as shown in Fig. 6.  
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Fig. 6. Shear strength versus normal pressure 

The analysis shows that strength of the ice rubble is largely determined by the tensile 
strength. The stress states inside the ice rubble are illustrated in Fig 7. The plastic Mohr-
Coulomb stress points are indicated with white dots and the tension cut-off points are 
indicated with black dots. For normal pressure σ = 1 kPa the ice rubble fails mostly in 
tension (Fig. 7a). The failure mode changes with increasing normal pressure up to  
5 kPa. The local failure mechanism becomes a combination of tension and shear modes 
(Fig. 7b). It is possible to see from the Fig. 6 that shear strength increases approximately 
linearly with increasing of normal pressure up to 5 kPa. The failure mechanism remains 
the same with further increasing of normal pressure (Fig. 7c). Therefore the curves be-
come non-linear and more flat as shown in Fig. 6. 
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a) 
 
 

σ = 1 kPa 

b) 
 

σ = 5 kPa 

                                c) 

σ = 10 kPa 

 

Fig. 7. Stress state inside the ice rubble Ri = 0.09, φ = 30º 
(White dots - Coulomb stress points, black dots - tension cut-off points) 

CONCLUSIONS 
The paper presents pseudo-discrete continuum model that simulates the breakage of 
rubble skeleton. A series of direct shear-box tests are done. The simulations were per-
formed in order to investigate the effect mechanical properties of the ice blocks and 
their contacts. The influence of normal pressure on the ice rubble strength was analyzed.  
The parametric analysis showed the following: 

• The failure of the ice rubble mostly occurs between the ice blocks. But some local 
breakage of individual ice blocks was also observed during simulations. The initial fail-
ure mode is independent of frictional component. Therefore cohesion is a major con-
tributor to the bearing capacity of the ice rubble. 

• The freeze-bond properties and their relations to the properties of parent ice are im-
portant. The shear strength linearly increases with increasing strength of the interface 
elements. 

• The shear strength of the freeze-bond linearly increases with increasing of contact 
area. Contact area between ice blocks, amount of contacts and inclination angles of con-
tacts has a great influence on failure mode and shear strength. Thus it seems to be of 
high importance to estimate these parameters in-situ. 

• The shear strength increased non-linearly with increasing of normal pressure. 
Strength of the ice rubble is mostly determined by tensile strength. But the some 
changes of failures mechanisms from tension to shear modes were observed, which 
probably is the result to the non-linear behaviour.  
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ICE  DYNAMIC  MODEL  WITH  A  VISCOELASTIC-PLASTIC  
CONSTITUTIVE  LAW 

Shunying Ji 1,2, Hung Tao Shen 2, Zhilian Wang 2, 
Hayley Shen 2, and Qianjin Yue 1

ABSTRACT 
In this study, a viscoelastic-plastic (VEP) constitutive model for ice dynamics is devel-
oped. This model consists of a Kelvin-Vogit model for viscoelastic behavior, the Mohr-
Coulomb yielding criterion, and the associated normal flow rule for plastic rheology. In 
the Mohr-Coulomb yielding criterion, the hydrostatic pressure determines the ice 
strengths under convergent and divergent conditions. Numerical simulations of ice mo-
tion in an idealized rectangular basin, and ice dynamics of Bohai Sea were carried out 
using Smoothed Particle Hydrodynamics (SPH) method.  

INTRODUCTION 
The internal ice force described by a constitutive model is the most complex term in the 
equation of motion of sea ice dynamics. It is also an important term affecting the results 
of sea ice simulation. The existing constitutive models for sea ice dynamics include vis-
cous plastic (VP) model (Hibler, 1979), elastic plastic (EP) model (Coon et al. 1974, 
Pritchard 1975), viscous elastic plastic model coupled with granular flow dynamics 
(Shen et al. 1987, Hopkins 1996), and anisotropic models (Hibler 2001, Coon et al. 
1998, Pritchard 1998). In this paper, a viscoelastic-plastic (VEP) model for sea ice dy-
namics is developed, in which the ice cover is assumed to be viscous-elastic under small 
strain and strain rate, and a plastic rheology is assumed under large strain rate, where a 
Mohr-Coulomb yielding criterion is considered. Like the existing VP and VE models, 
this VEP model is also based on the assumption of a two-dimensional isotropic contin-
uum medium. The present VEP model is implemented in the SPH ice dynamics model 
(Shen et al. 2000, Wang et al. 1999) to simulate ice motion in a rectangular basin and in 
the Bohai Sea. 

 

                                                 
1 Department of Civil and Environ. Engrg., Clarkson University, Potsdam, New York 13699-5710, USA.   
   Email: jisy@clarkson.edu or htshen@clarkson.edu  
2 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,  
   Dalian 116023, China. 

 274

mailto:jisy@clarkson.edu
mailto:htshen@clarkson.edu


VISCO-ELASTIC PLASTIC MODEL 
In the present model, we use Kelvin-Vogit model to describe the visoelastic behavior of 
the sea ice. Coupling with the plastic rheology, the viscoelastic-plastic model is estab-
lished as shown in Fig.1. The spring, dashpot, and sliding block represent the elastic, 
viscous and plastic properties, respectively.  

 
Fig. 1. Viscoelastic-plastic model for sea ice dynamics 

The stress-strain relationship of a viscoelastic model can be written as  

( ) ( ) ijijkkijijkkVVijVij PGKG δδεεδεηζεησ r22 −−++−+= && ,                 (1) 
where, ζv and  ηv are the bulk and shear viscosities; Pr is the hydrostatic pressure; and K 
and G are the elastic bulk and shear modulus respectively: 
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EK    and  
)1(2 υ+

=
EG  .                                         (2)  

In the above, E is the Young’s modulus, and υ is the Poisson’s ratio. The elastic 
modulus of ice cover can be formulated as a function of ice concentration, 
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0 , in which  is an empirical constant, N is the ice concentration, 

and N

15=j

max is its maximum possible ice concentration. The ice viscosities may be ex-
pressed in a similar form.  

The Mohr-Coulomb friction law has been introduced into ice dynamics (Shen et al. 
1990). In terms of principle stresses σ1 and σ2 , the yield criterion can be written as 

f(σ1,σ2) = σ1 – σ2 + (σ1 +σ2) sinϕ – 2ccosϕ = 0,                         (3) 

where, c is the cohesion, and φ is the friction angle. The Mohr-Coulomb yield surface is 
a hexagonal cone in 3-D principle stress space, as shown in Fig. 2. When the hydrostatic 
pressure is nonzero, the principle stress in the z-direction is σ3 = –P0. This yield function 
is determined by three parameters: frictional angle, cohesion, and hydrostatic pressure.  

The Mohr-Coulomb yielding condition is defined by three distinct surfaces, i.e. the 
shear, convergent, and divergent surfaces, which can be written as  

DD KcK 221 += σσ ,
                                                    (5)  
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Fig. 2. Mohr-Coulomb yielding criterion in 3D 

When ice enters the plastic state under large deformation, 
the yield surface. The deformation includes two components:
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where Del is the elastic modulus tensor. When the materia
have . When it is in plastic state, strain can be dete
sociated flow rule. The Mohr-Coulomb yielding function is 
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where λd  is the plastic multiplier, and Ψ is the plastic pote
as the yield curve )( ijf σ  in this paper.  

In a floating ice field, the mean vertical hydrostatic pressure
al. 1990) 
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where, P0 is the mean pressure in vertical direction, and ρ i an
and water. The horizontal hydrostatic pressure can be calcula
Pr is the horizontal hydrostatic pressure, and K0 = 1–sinϕ. 
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c strains. The elastic stress 
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l is in the elastic state, we 
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d ρ w are densities of ice 
ted as Pr = K0P0, in which 



NUMERICAL SIMULATIONS  
Analytical and numerical solutions of ice ridging in a rectangular basin - The steady 
state profile of ice ridge, formed by unidirectional wind and water drag in a rectangular 
basin initially covered by uniform ice thickness and concentration, can be derived ana-
lytically. Using traditional VP model, modified VP model, classical jamming theory, and 
VEP model, the steady state ice ridging thickness profiles are plotted in Fig. 3. Model 
parameters are listed in Table 1. The ice ridging process in the regular basin with bank 
friction can be simulated with VEP model. The mean thickness and distribution of 
stresses are plotted in Figures 4 and 5.  
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Fig. 3. Analytical solutions of ice thickness profile with different constitutive models 
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Fig.4. Ice ridging thickness simulated from VEP model and analytical solutions 

 
Fig. 5. Distributions of shear and normal stresses in x direction 
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Simulation of Bohai Sea ice dynamics – The dynamics of Bohai Sea ice is simulated 
with the VEP model, and compared the simulations using traditional VP model (Hibler 
1979) and modified VP model (Shen et al. 1990). The initial ice thickness and concentra-
tion are estimated from the NOAA satellite remote images. The input wind field is de-
termined with an operational atmospheric model (Wang 2000). The tidal current is simu-
lated with two-dimensional shallow water equations solved by an ADI finite difference 
method (Zhang 2000). The main model parameters are the same as listed in Table 1. Ad-
ditional parameters used in the simulations are listed in Table 2. The simulated ice condi-
tions at the JZ20-2 oil/gas platform in Liaodong Bay are presented. From these three 
models the ice velocities are almost the same, because ice drift is dominated by the tidal 
current. The divergences of ice velocity simulated with VEP model and modified VP 
model vary with the tidal cycle, while that of traditional VP model has a strong random 
fluctuation (Figure 6). The same phenomenon appears in the stresses. The stress magni-
tudes simulated with VEP model and modified VP model are very close, and they are 
much lower than that of the traditional VP model (Figure 7). If we reduce the pressure 
P* of the traditional VP model from 5.0×103 to 1.0×103 N/m2, the fluctuation of ice 
stress and velocity divergence can be reduced. From the principal stress of the three 
models it can be seen that the ice cover appears to be in the plastic regime (Figure 8). 

 

Table 1. Parameters used in the ice ridging simulation 

Variable Definition  Value Variable Definition  Value 

ti0
Initial ice thick-
ness 0.2 m N0

Initial ice concen-
tration 100% 

B Width of ice 
field 500 m L Initial ice length 4500 m 

φ Ice frictional 
angle 46˚ P* Ice strength in tra-

ditional VP model 
1.0×104 
N/m2

v Possion’s ratio 0.3 ζv0 Bulk viscosity 1.0×106 
N·s/m2

Va Wind speed 15.0 
m/s ηv0 Shear viscosity 2.5×105 

N·s/m2

Vw Current speed 0.4 m/s E0 Young’s modulus 1.0×105 
N/m2

ca
Wind drag coef-
ficient 0.015 cw

Current drag coef-
ficient 0.02 

t∆  Time step 0.5 s S∆  Initial parcel size 50 m 

 

Table 2. Additional parameters used in the sea ice dynamics simulation of Bohai Sea 

Variable Definition  Value  Variable Definition  Value  

ca
Wind drag coef-
ficient  0.0015 ζmax

Maximum bulk 
viscosity 

1.0×1010 
N·s/m2

cw
Current drag 
coefficient 0.0025 ∆t Time step 40s 

P* Ice strength of 
VP model 

5000 
N/m2 ∆S Initial ice parcel 

dimension 2km 
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Fig. 7. Sea ice stresses simulated in 48 hours at the JZ20-2 area 
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Fig. 8. Principal stress state of sea ice simulated at the JZ20-2 area 

CONCLUSIONS 
A viscoelastic-plastic (VEP) constitutive model for ice dynamics is presented along 
with numerical simulations. In this VEP model, ice cover under both the viscous-
elastic behavior before yielding, and the plastic rehology after yielding are considered. 
The Mohr-Coulomb yielding criterion, the associated normal plastic flow rule, and the 
hydrostatic ice pressure are used. With this VEP model, the ice ridging process in 
rectangle basin is simulated and compared with the analytical solution. The ice 
dynamic process in the Bohai Sea is simulated and compared with the traditional VP 
model, and the modified VP model. From these comparisons, it is found that the 
present VEP model can simulate the ice edge and ice thickness distribution more accu-
rately. The stability of the VEP model is also verified with the simulated ice 
parameters at the JZ20-2 area.  
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THERMODYNAMIC  CONSOLIDATION  OF  SEA  ICE  RIDGES 
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ABSTRACT 
A model of thermodynamic consolidation of sea ice ridges is considered. Temperature 
and porosity distributions inside the ridge are calculated for self-similar problem about 
the consolidation of homogeneous rubble ice and for realistic floating ridge.  

INTRODUCTION 
The ice ridge is formed during several tens minutes. During this time sufficiently large 
number of cold ice blocks, which surface temperature is closed to atmosphere tempera-
ture, become submerged in sea water with temperature about -2C. Although initially ice 
ridge consists from unfrozen ice blocks, which can displace relatively each other, the 
influence of atmosphere cooling causes the formation of consolidated layer (CL) in the 
middle part of the ridge. The thickness of CL can be several times greater the thickness 
of level ice which was formed under the same meteorological conditions. For example, 
the CL of ridges can reach 8 m in Pechora sea. Field studies of internal structure of ice 
ridges are based on vertical drilling of the ridges in several points. The porosity of the 
ice on different levels of the ridge in each drilling location is estimated by vertical speed 
of the drill. Vertical structure of the ridge is studied in several vertical holes, and then 
these data are extrapolated to renew 3D structure of the ridge and to estimate its 
strength. The studies show that there are unfrozen regions inside ridges filled by shuga 
(mixture of ice crystals and brine) and sea water. 
Hoyland (2002) elaborated FEM model of thermodynamic consolidation of floating ice 
ridge based on the law of internal energy balance taking into account volume crystalli-
zation of sea water below the consolidated layer of the ridge. He found that the ratio of 
consolidated layer thickness to level ice thickness is changed from 1.6 to 2. Marchenko 
et al., (2003a, 2003b) considered self-similar problems about the consolidation of ho-
mogeneous rubble ice taking into account salt diffusion and volume crystallization 
processes. They found the same estimations for the thickness of consolidated layer as 
Hoyland (2002) and the increasing atmosphere-ocean heat fluxes in the initial period of 
the consolidation. In the present work we formulated more realistic model of the con-
solidation and improve estimations of the CL thickness, temperature and porosity distri-
butions inside the ridge.  
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BASIC EQUATIONS 
A ridge is considered as a mixture of solid ice blocks, ice crystals and sea water be-
tween them. It is assumed that temperature T  of these components is equal to the tem-
perature of salt water freezing STf Γ−= , where  is water salinity and . 
Fractional volume of the water inside the ridge is characterized by porosity v ∈ (0,1). 
Heat conductivity equation is written as follows 

S C/ppt6.56 o≈Γ

( ) [ ]TCC
t

Q
t
Tcc iwiviwvw ∇−+∇=

∂
∂

+
∂
∂

−+ ))1(()1(,, ννννρνρ ,                   (1) 

where T is temperature, ρw and ρi are water and ice densities, cv,i and cv,w are the specific 
heat capacity of ice and water, Q is the latent heat, Ci and Cw are the thermal conductivi-
ties of ice and water, t  is the time, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is differential operator, x, y and z 
are horizontal and vertical coordinates. Salt diffusion in the water is described by equation 

( SD
t
S

∇⋅∇=
∂

)∂ νν )( ,                                                (2) 

where S is water salinity and D is coefficient of salt diffusion. Equations (1) and (2) to-
gether with condition T = Tf are used for the finding of T, S and v. We distinguish solid 
ice fraction with v < 0.2, where D = 0, and the mixture of sea water with ice crystals 
with v > 0.2, where D > 0 is the coefficient of molecular diffusion.  

Table 1. Numerical values of ice and water characteristics 

wρ  iρ  ivc ,  wvc ,  iC  wC  Q  D  

1020 

kg/m3

910 

kg/m3

2.09 

kJ/kg K 

4.19 

kJ/kg K 

2.24 

W/m K 

0.58 

W/m K 

3.34 105 

kJ/m3

1.45 10-9

m2/s 

CONSOLIDATION OF RUBBLE ICE, SELF-SIMILAR PROBLEM 
It is assumed that in initial time 0=t  half-space  is filled by rubble ice with initial 
porosity v

0>z
r > 0.2. Initial temperature of the rubble is Tr = –1.98°C, while the temperature 

of boundary z = 0 is . The cooling causes the formation of solid ice called as 
consolidated layer (CL) in the vicinity of boundary z = 0. At the boundary between solid 
ice and the rubble we set the continuity of the temperature and consider boundary condi-
tions for the heat and salt fluxes:  

ra TT <

( ) ( )
z
TCC

z
TCC

dt
dhQ iwhziiiwhzi ∂
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Here  is the CL thickness, h 2.0=iν  is solid ice porosity at the lower boundary of the 
CL, +ν  is unknown porosity of the rubble below the CL. Inside the CL equations (1) 
and (2) with  are used, below the consolidated layer .  0=D 0>D

Self-similar solution of equations (1) and (2) depends on dimensionless variable 
)//( ∗∗= ttlzς , and thickness of the consolidated layer is ∗∗= ttAlh / , where con-
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stant A  is defined from the solution,  is representative length scale and 
. From Tab. 1 we find that 

∗l

iivi Cclt /,
2ρ∗∗ = ≈∗t 10 days when  ≈∗l 1 м. Example of self-

similar solution is shown on Fig. 1a,b for the case  and C20o−=aT 3.0=rν . Fig. 1c 
shows the dependence of constant  from temperature  for A aT 3.0=rν  and 4.0=rν  by 
dots. From Fig. 1c follows that 87.0≈A  when  and C20o−=aT 3.0=rν . From Fig. 1a 
follows almost linear temperature profile within the CL. Fig. 1b shows the existence of 
thin boundary layer below the CL where the porosity is changed from 0.2 to 0.3. Con-
tinuous line at Fig 1c shows the thickness of level ice floating on the surface of sea wa-
ter calculated from self-similar problem, where salinity and temperature below the ice 
are given constants. One can see that the ratio of the CL layer thickness to the level ice 
thickness is changed from 1.5 to 2 depending on the surface temperature . It has a 
good agreement with simulations of Hoyland (2002).  

aT

 

Fig. 1. Example of the dependencies of the temperature (a) and porosity (b) from self-similar variable ζ 
for  T = –20°Cand va r = 0.3. Constant A  versus temperature T  for the values of rubble ice porosity  

v
a

r = 0.3 and vr = 0.4, continuous line is related to open water freezing (vr = 1) (c) 

CONSOLIDATION OF REALISTIC FLOATING RIDGE.  
Time-dependent model of ice ridge consolidation is elaborated to describe the evolution 
of ridge porosity ν  and temperature T  under given meteorological conditions in the 
cold time of a year. Energy is transferred between the ridge and its surroundings; the 
ocean beneath and the air above. It is assumed that water temperature below the ridge is 
closed to the temperature of sea water freezing ~ –2o C. Energy is taken away through 
the top surface, and the energy exchange with the surrounding air consists of turbulent 
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fluxes (sensible (H) and latent (LE)) and radiation balance (R). Radiation is treated as a 
surface flux in the model. Thus boundary condition on the top surface of the ridge is 
formulated as follows 

RLEH
n
TCi ++=

∂
∂

− ,                                                (4) 

where  denotes normal derivative from the temperature. Fluxes H, LE and R are 
calculated by the use of the air temperature, the wind speed, the specific heat capacity of 
air, the relative humidity of the air, the density of air, the albedo and the surface tem-
perature. The formulas for the fluxes are taken from Makshtas (1991).  

nT ∂∂ /

Initial porosities of solid ice, shuga and water are 0.05, 0.5-0.6 and 1 respectively. They 
are denoted as black, gray and white regions at Fig.2. Initial temperature of sea water 
and shuga between ice blocks is –2oC. Air temperature and wind velocity are –20oC and 
10 m/s respectively.  

 
Fig. 2. Solid ice blocks composed the ridge is shown by black color,  

gray regions show shuga between ice blocks, white regions show sea water 

Figures 3 show the results of numerical simulations with initial temperature of solid ice 
blocks T0 = –11°C (a,b) and T0 = –3°C (c,d) for two months consolidation. Figure 3a 
shows the existence of the consolidated ice, which porosity is changed from 0.05 inside 
solid ice blocks to 0.4 between them, in the central part of the ridge up to 7 m depth 
when T0 = –11°C. The thickness of level ice remains during this time smaller 2 m. Fig-
ure 3c shows that lower boundary of the consolidated ice in the central part of the ridge 
is located on 2.5 m depth when T0 = –3°C.  
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Fig. 3. The distribution of the porosity (a,c) and the temperature (b,d) after two months consolidation. 

Initial values of solid ice temperature  are shown at the figures 0T

Figure 3b shows that low temperature anomalies up to –5oC are conserved inside solid 
ice blocks during two months when T0 = –11°C. When the ridging is occurred in the 
warm weather (T0 = –3°C), and then the weather becomes cold, the temperature of 
deeply submerged ice blocks remains close to the water temperature (Fig. 3d). Never-
theless low temperature anomalies penetrate deeper in the middle part of the ridge than 
below the level ice.  

 
Fig. 4. Heat fluxes averaged over the surface of ridged ice (lines A and B) and heat flux over the surface 

of level ice (line LI) versus the time 

Lines A and B on Fig. 4 show the heat fluxes averaged over the surface of ridged ice 
(segment C2C3 on Fig. 2), and line LI shows the heat flux averaged over the surface of 
level ice (segment C1C2 on Fig. 2). Line A is constructed when T0 = –11°C, and lines B 
and LI are constructed when T0 = –3°C. One can see that the heat flux through the 
ridged ice is larger the heat flux through 1m level ice during the first week of the con-
solidation.  

DISCUSSIONS AND CONCLUSIONS  
The model of thermodynamic consolidation of sea ice ridges is elaborated on the base of 
the laws of internal energy balance and salt diffusion in sea water. Self-similar problem 
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about the consolidation of homogeneous rubble ice filled half-space with initial porosity 
0.3-0.4 is investigated. It is shown that the CL thickness is larger the level ice thickness 
in 1.5-2 times depending on the surface temperature. Numerical simulations of the con-
solidation of more realistic floating ridge show that the depth of consolidated ice de-
pends on initial temperature of ice blocks composing the ridge and the distance between 
ice blocks. In considered example the bottom of consolidated ice reaches 7 m in the 
middle part of the ridge, and low temperature anomalies ~ –5oC are conserved up to the 
depth 13 m inside the ridge. There is initial period of the consolidation about one week 
when atmosphere-ocean heat fluxes through the ridged ice are larger heat fluxes through 
the level ice with 1m thickness.  
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