

23rd Arthur Thomas Ippen Lecture

EXPLORING NATURAL AND ANTHROPOGENIC IMPACTS ON FRESHWATER LENS ON SMALL OCEANIC ISLANDS

CHUNHUI LU HOHAI UNIVERSITY, CHINA

Background

- Island: a body of land surrounded by water
- 200,000 islands (>0.1km2) on the Earth (~6.7% of the Earth's land area)
- Over two thirds of the world's countries (~130 countries) include islands
- More than 650 million inhabitants (~8% world's population)
- Continental island, oceanic island (volcanic island and coral island), and alluvial island in the ocean

Natural Island

Artificial Island

12.6 km²

Jurong Island (SGP) 32 km²

Palm Jumeirah (UAE) 12 km²

Freshwater Supply

Rainwater Harvest

Boat Transport

Desalination Plant

Reclaimed Water Use

Freshwater Lens

Oberle et al. (2017)

Influence Factors

- Geometry: size and shape (circular island, barrier island, annulus segment island, elliptical island)
- Geology: hydraulic conductivity, aquifer heterogeneity
- Recharge and evaporation: temporal and spatial variation
- Oceanic boundary: tides, sea-level rise, storm surge
- Human activities: land reclamation, pumping, contaminant release

Freshwater Lens

Majuro Atoll, Marshall Islands (Huxel, 1973)

Freshwater Lens Thickness

- The largest freshwater lens thickness is 304.8 m in Hawaii
- For small low-lying islands, the freshwater lens thickness is only several meters
- For some small islands, the freshwater lens only occurs in rain seasons and disappears in dry seasons

- Geometry effect (annulus segment and elliptical islands)
- > Temporal and spatial variation in recharge
- A new concept for improving fresh groundwater storage and maximizing the well pumping rate
- Storm surge effect

Annulus Segment Island

Namu Atoll, Marshall Islands

Annulus Segment Island

Luo et al., 2021, HESS

Elliptical Island

Elliptical Island

Temporal and Spatial Variation in Recharge

Temporal Variation in Recharge

Spatial Variation in Recharge

Temporal Variation in Recharge

Temporal Variation in Recharge

Approximate analytical solution

Normalization

Hantush Solution

A linear convolution for a time-dependent recharge rate

$$\begin{aligned} H^* &= \frac{H}{W}, w^* = \frac{w}{K}, \overline{H}^* = \frac{\overline{H}}{W}, t^* = \frac{Kt}{W\varepsilon}, x^* = \frac{x}{K} \end{aligned}$$
$$\begin{aligned} \overline{H^{*2}\left(x^*, t^*\right)} &= \frac{w^* \overline{H}^* t^*}{1 + \delta} \left[S^*\left(n^*\right) + S^*\left(\overline{n^*}\right) \right] \\ n^* &= \frac{1 + x^*}{\sqrt{4\delta \overline{H}^* t^*}}, \overline{n^*} = \frac{1 - x^*}{\sqrt{4\delta \overline{H}^* t^*}}, S^*\left(\alpha\right) = \int_0^1 erf\left(\frac{\alpha}{\sqrt{\tau}}\right) d\tau \end{aligned}$$
$$\begin{aligned} \overline{H^{*2}\left(x^*, t^*\right)} &= \int_{-\infty}^{+\infty} w^*\left(\tau\right) h\left(x^*, t^* - \tau\right) d\tau \\ h\left(x^*, t^*\right) &= \frac{w^* \overline{H}^*}{1 + \delta} \left[S^*\left(n^*\right) + S^*\left(\overline{n^*}\right) \right] + \frac{w^* \overline{H}^* t^*}{1 + \delta} \left[\frac{\partial S^*\left(n^*\right)}{\partial t^*} + \frac{\partial S^*\left(\overline{n^*}\right)}{\partial t^*} \right] \\ \frac{\partial S^*\left(n^*\right)}{\partial t^*} &= -\frac{1 + x^*}{4\sqrt{\delta \overline{H}^2}} t^{*-\frac{3}{2}} \int_0^1 \frac{2}{\sqrt{\pi \tau}} \exp\left(-\frac{n^{*2}}{\tau}\right) d\tau \end{aligned}$$

Tang et al., 2020, JH

Temporal Variation in Recharge

Spatial Variation in Recharge

Approximate analytical solution

Spatial Variation in Recharge

A New Concept

Fully Penetrating Barrier

Conceptual model

Assumption

Uniform recharge

- □ Sharp-interface
- Ghyben-herzberg approximation
- Dupuit-Forchheimer assumption

Darcy's law and Continuity equation

Lu et al. 2019, WRR

Analytical Solutions

Lu et al. 2019, WRR

Laboratory Setup

Experimental Vs. Analytical Solution

Parameter	Symbol	Value	Parameter	Symbol	Value
Aquifer depth	Н	24.5 cm	Half-width of the island	D	55 cm
Recharge rate	W	0.18 cm/min	Hydraulic conductivity of original island	K_1	500 cm/min
Barrier width	D_2	10 cm	Hydraulic Conductivity of barrier	<i>K</i> ₂	12.4 cm/min

Case Study - Yongxing Island

Before

Q1: Can we use a partially penetrating low-permeability barrier to enhance fresh groundwater storage?

Conceptual Model

Original homogeneous island

Partially penetrating barrier

Analytical Solution

Yan et al., 2021, WRR

Laboratory Experiment

Parameter	Symbol	Value	Parameter	Symbol	Value
Aquifer depth	Н	23.7 cm	Recharge rate	W	0.036 cm/min
Barrier width	D_2	10 cm	Half-width of the island	D	55 cm
Barrier depth (under sea level)	H ₂	a) 0 cm	Hydraulic conductivity of original island	<i>K</i> ₁	360 cm/min
		b) 8 cm			
		c) 16 cm	Hydraulic Conductivity of barrier	<i>K</i> ₂	11 cm/min
		d) 23.7 cm			

Sensitivity Analysis

Q2: How much freshwater can be extracted from a freshwater lens of a small island?

Conceptual Model

Maximum pumping rate: under the steady state condition, the saltwater interface just reaches the bottom of the well screen.

Analytical Solutions

Maximum pumping rate:

$$q_{cr} = wD \frac{\frac{K_b}{K_0} \left(1 - \frac{D_b}{D}\right)^2 + \left(2 - \frac{D_b}{D}\right) \frac{D_b}{D} - \frac{1 + \varepsilon}{\varepsilon^2} \left(\frac{H_W}{D}\right)^2 \frac{K_b}{K_0} \frac{K_0}{w}}{\frac{K_b}{K_0} \left(1 - \frac{D_b}{D}\right) + \frac{D_b}{D}}$$

Yan et al. 2022, WRR

Laboratory Experiment

Maximum Pumping Rate Without Barrier

Maximum pumping rate = 50% of the total recharge, which is achieved when the well located at the center of the island and the same elevation as the sea level.

Maximum Pumping Rate With Barrier

Q3: Will the subsurface barrier enhance or alleviate the effect of storm surge on island groundwater quality?

Conceptual Model

Storm Surge Effect

Yang et al. 2022, JH

Quantitative Analysis

Conclusions

- We developed analytical solutions of the freshwater lens for annulus segment island, elliptical island, and islands with spatial and temporal variation in recharge, respectively;
- For the first time, a strategy using a low-permeability barrier is proposed to enhance fresh groundwater storage and extraction in small oceanic islands, and validated through analytical, numerical and experimental results;
- A critical barrier depth is found, indicating that a partially penetrating barrier rather than a fully penetrating barrier could be used to reduce the construction cost without reducing the performance;
- The subsurface barrier alleviates the effect of storm surge on island groundwater quality.

Thank you for your attention!