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ABSTRACT 

Heyman et al., (2015:1888) argues that, “the world is ill-prepared” to handle any “sustained and threatening 
public-health emergency”. Such public health emergencies stemming from infectious disease outbreaks is 
creating a serious threat to global health security. For example, climate change and extreme weather events 
threaten to alter and affect geographic areas pertaining to disease vulnerability, such as greater risks of 
mosquito-borne diseases (dengue, malaria, yellow fever and Zika). The emergence of these disease outbreaks 
and their influence globally has sparked a renewed attention on global health security. In the Chatham House 
report ‘Preparing for High Impact, Low Probability Events’, Lee et al (2012:vii) ‘…found that governments and 
businesses remain unprepared for such events’. Recent outbreaks characterize the ‘new normal’ and has 
unveiled major deficiencies in preparedness, response and recovery initiatives. For example, Ae. aegypti is one 
of the most significant mosquito species as it is capable of transmitting dengue fever, chikungunya, Zika, and 
yellow fever viruses. Understanding the emerging threat employing landscape real time epidemiological tools 
may ‘experimental futuring’ and scenario planning, this paper presents novel methods to predictively understand 
the processes by which species colonize and adapt to human habitats with a focus on the case of a virulent 
disease-vectoring arthropod such as Ae. aegypti. In this paper, we introduce real time ArcGIS machine learning 
(ML), spectral signatures in unmanned semi-Autonomous drone aircraft platform for controlling Ae. aegypti. 
mosquito habitats. The multivariate real time platform regressed the spatial risk of human exposure to Ae. 
aegypti pathogens to forecast unknown capture point georeferenceable geolocations of elevated risk. In so 
doing, the methodology described strengthens mitigation, preparedness, response and recovery through 
vulnerability analysis and predictive analytics.  
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1 INTRODUCTION 

Heyman et al., (2015:1888) argues that, “the world is ill-prepared” to handle any “sustained and threatening 

public-health emergency”. Such public health emergencies stemming from infectious disease outbreaks is 

creating a serious threat to global health security. The complex spatial-temporal dynamics associated with 

climate related events, social, economic, political and environmental problem space influence the emergence 

and distribution of vector-borne diseases (VBDs) thereby shaping the public health landscape. Similarly, natural 

disasters such as earthquakes, landslide and flooding are not only physically destructive to communities but 

also are precursors to public health disasters. For example, as discussed in Reina Ortiz et al., (2017:1) ‘Natural 

disasters, like earthquakes, are often associated with or followed by serious public health consequences such 

as increased risk for communicable diseases, including waterborne and vector-borne diseases’. This emerges 

from the impact of disasters on creating conditions that are conducive to mosquito breeding.  

Climate change and the increase in the severity of natural disasters has compromised public health conditions 

particularly in vulnerable communities thereby highlighting disparities across populations defined spatially.  As 

noted by Bardosh et al., (2017:6), ‘…VBDs are also influenced by the context of social, cultural and political 

change, which have major effects on the social determinants of health, mediating financial flows and human 

resources and shaping the delivery of healthcare services and disease prevention initiatives’. The World Health 

Organization (WHO) argue that Climate change has been identified as “the defining issue” for public health in 

the 21st century’ (Sheehan,Fox, Kaye,& Resnick, 2017). The disease aetiology connecting VBDs and climate 

change emerges from the effect on life cycle of disease vectors and transmission potential of pathogens 
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(Berrang-Ford et al., 2016). Bardosh et al., (2017 ) argue that ‘…The threat of a rapidly changing planet – of 

coupled social, environmental and climatic change – pose new conceptual and practical challenges in 

responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics 

associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, 

economic and political-institutional systems’. Recognizing the complex interdependencies provides insights into 

disaster scenario development and ensuing mitigation and preparedness awareness.  

As described in Reina Ortiz et al (2017) ‘…anthropogenic climate change has led to changing global 

temperatures, which may be associated with changes in rainfall as well as other important climatic variables like 

humidity and pressure’. Such changes have significant public health implications, particularly as is relates to 

optimizing conditions to support vector-borne disease superbreeder sites. This coupled with natural disasters 

creates conditions for the ‘perfect storm’ that can lead to an increase in the public health burden of vector-borne 

diseases. Reina Ortiz (2017) argue that  

‘Climatic variables are known to affect vector-borne diseases transmission. The rise in vector-borne diseases 

such as dengue and malaria has been found to have a direct relationship with the occurrence of strong El Niño 

events. Similarly, vector-borne diseases have been found to be associated with Surface Sea Temperatures and 

the Tropical South Atlantic’. 

In addition to the biophysical aspects of the problem space are the social dimensions associated with VBD and 

climate related disasters. Bardosh et al (2017:7 ) argue that ‘Poverty enhances vulnerability to VBDs in multiple 

ways, mainly by removing the capacity for people to cope with and address health risks. Different temporal and 

spatial scales are at play, and extend across a diverse number of social, cultural, political, economic, 

environmental, climatic, and biological determinants’. The hazard of place model (Cutter, 1996), figure 1, 

captures the climate change and extreme weather impact geospatial/temporal and social dimensions discussed. 

By recognizing the geospatial/temporal and social dimensions of a climate change induced disaster, we highlight 

the application of predictive analytics to support scenario planning and mitigation strategy development. 

Bardosh et al. (2017:16) highlight the urgency for action:  

‘The importance of resilient global health systems to deal with vector-borne infections, and indeed most other 

human health threats, is truly a matter of life and death. There is little doubt that the spectrum of social, 

environmental and climatic changes occurring simultaneously in the twenty-first century will impact the 

distribution and incidence of VBD’s’.  

Within the context of climate related events and the Hazard of Place model, ‘the rise in vector-borne diseases 

such as dengue and malaria has been found to have a direct relationship with the occurrence of strong El Niño 

events’ (Reina Ortiz et al., 2017) as well as in the Tropical South Atlantic stemming from perturbations in Surface 

Sea Temperatures. Hence, through experimental futuring supported by predictive analytics we can better 

develop place vulnerability awareness (biophysical, social, spatial).  

Risk

Mitigation

Hazard 
Potential

Geospatial 
Temporal 
Context

Social 
Context

Biophysical 
Vulnerability

Social 
Vulnerability

Place 
Vulnerability

Figure 1. Hazard of Place model (Cutter, 1996) 
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2 DISCUSSION 

The hazard place model (Cutter, 1996) captures well the complex interactions between the biophysical stressors 

and social vulnerabilities within a geospatial context. This presents an opportunity for the design of scenario 

planning and mitigation strategy development by exploring the vulnerabilities associated with place. In support 

of this, real-time predictive analytic solutions were developed.  

     We develop a customized, iOS application (app) for identifying geographic locations ( henceforth 

geolocations)  of superbreeder,   Aedes aegypti,, capture point, habitat properties in Hillsborough County, 

Florida, USA from real time acquisitions of  sub-meter resolution ( e.g., 30 centimeter),  land use land cover 

(LULC) , ecologically georeferenced ( henceforth eco-georeferenced), images obtained from a drone unmanned 

aircraft. Initially we created experimental, Ae. aegypti, breeding sites in a variety of differentially stratified, LULC 

classifications (e.g., recreational parklands, agro-industrial pasturelands and urban residential  settings). 

Wayward, differentially corrected, GPS proposed, custom flight plans were then overlaid onto ArcGIS models 

of the classified land covers throughout Hillsborough County so that local mosquito control personnel and USF 

research collaborators were able to create collections of the habitat imagery at the county-level. The images 

were analyzed to optimally identify unbiased, capture point, Red Green and Blue (RGB), wavelength signatures 

unique to the artificial breeding sites. We collected images from the experimental sites using a drone (DJ 

Phantom) carrying a camera capable of producing wide-angle high-resolution images (Figure 2).   

Figure 2. A high-end radio-controlled Phantom 2 Vision+ camera-equipped quadcopter 

     Spectral signature of a vector arthropod, aquatic, larval/pupal habitat is the variation of reflectance or 

emittance of breeding site material (e.g., canopied, capture point, eco-georeferenced, LULC, seasonal foci) with 

respect to wavelengths (i.e., reflectance/emittance as a function of RGB wavelengths)( Jacob et al. 2013, Jacob 

et al. 2011). The spectral signature of an object is a function of the incidental, electromagnetic, wavelength and 

material interaction with that section of the electromagnetic spectrum( Jensen 2005). The signal measurements 

can be with various,  real time, UAV instruments, including a task specific spectrometer, which can conduct 

multiple, unmixing, algorithmic, real time tasks in ArcGIS [ e.g. separation of a capture point,  RGB and near 

infrared NIR) surface reflux proportions  as acquired by  digital cameras]. Calibrating, sub-meter resolution, 

RGB, spectral, Ae aegypti ,capture point, LULC, reflux signatures under specific illumination allowed applying 

an empirical correction to  the real time UAV imager employing  DroneDeploy  3D Map software ( www.esri.com). 

Our assumption was that the unmixed interpolative,  RGB, sub-pixel ( i.e., endmember) weights could reveal 

unsampled, productive seasonal foci  based on eco-georeferenced, LULC,  geolocations of known super 

breeder, capture point foci. In the mathematical field of numerical analysis, interpolation is a method of 

constructing new data points within the range of a discrete set of known data points ( Cressie 1993). 

     To construct a real time, UAV, Ae aegypti,  forecast, vulnerability model for targeting unknown foci, individual 

pixel, 0.31, spatial resolution, geoclassified, reflectance estimates were synthesized from, experimental, eco-

georeferenced, LULC, capture point, aquatic, larval/pupal habitat, epi-entomological foci employing a Li-Strahler 

geometric-optical model, This procedure allowed for the creation of an RGB  spectral signature of a unit of 

habitat.   The drone model employed three LULC scene components: sunlit canopy (C), sunlit background (G) 

and shadow (T) generated from the real time ortho-images, to determine the. Endmember ( sub-pixel) sub-

meter resolution RGB spectra associated with the experimental,  Ae. aegypti, larval/pupal, aquatic, habitat, 

artificial, water container, capture points (e.g., flower pot, waste tire, coffee mug etc.). The C, G and T 

component LULC classes were estimated using ENVI software package (Exelis Visual Information Solutions, 

Boulder, CO) in the UAV, real time, dashboard which employed object-based classifiers [ e.g., Spectral Angle 

Mapper (SAM)] to delineate the capture point, RGB, spectral reflux frequencies ( see Figure 3).  

http://www.esri.com/
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Figure 3 A) Reference signatures derived from a drone ENVI spectral library of an experimental Ae. aegypti, 

seasonal, backyard, water stagnant, flower pot foci from real-time UAV video footage B) SAM scatter matrix C) 

unmixed target RGB LULC signature, endemic, foci, visible and near infra-red wavelengths 

 SAM is a physically-based spectral classification that uses an n-D angle to match pixels to derivative, RGB 

reference spectra (https://www.harrisgeospatial.com/docs). Here the unmixing algorithm determined the 

spectral similarity between the drone imaged capture point, gridded, LULC Ae. aegypti, signature RGB spectra 

by calculating the angle between the spectra and treating them as vectors in real time geographic space 

(henceforth geospace). This remotely sensed technique, calibrated the reflectance, vector arthropod, while 

simultaneously quantitating LULC dimensionality of, the capture points which we noted as equivalent to the 

number of wavebands in the real time UAV environment. The technique was relatively insensitive to illumination 

and albedo effects. The endmember, LULC, capture point spectra employed by SAM came from the drone 

spectral library. We extracted them directly from orthomosaicked, , LULC images as eco-georeferenced, capture 

point, RGB spectra. SAM compared the angle between the endmember, RGB spectrum vector and each, 

capture point, habitat, pixel vector in n-D in geospace which was displayed in the real time UAV module. Smaller 

angles represented closer matches to the Ae aegypti reference signature spectrum. Capture point drone pixels 

in geospace further away than the specified maximum angle threshold in radians were classified in the real time 

UAV database as “cold spots’ ( noisy outliers). 

     Base maps were created from the UAV sampled, eco-georeferenced, seasonal, breeding site, capture point, 
GPS, ground coordinates using the, real time, dashboard imagery in ArcGIS. Each eco-georeferenced, Ae. 
aegypti, aquatic, larval/pupal habitat, with its associated land cover attributes, were entered into a UAV spectral 
library. The real time, ArcGIS dashboard module in the drone dashboard was employed to support the mobile 
field data acquisition, of the capture points through handheld personal digital assistants (e.g., i-tablet). All two-
way, remote synchronization of data, geocoding, and spatial display was processed employing the embedded, 
ArcGIS Interface Kit™ geoprocessing tools in the UAV real time dashboard.  

We attempted to understand potential limitations of real time, RGB, sub-meter resolution, signature,UAV 
interpolation to determine  unknown eco-georeferenced,  geolocations of Ae aegypti , artificial, water stagnant, 
,container breeding site foci. Mosquito county abatement personnel in Hillsborough county and USF 
collaborators identified a number of breeding container sentinel sites and recorded their GPS locations. Habitats 
of varying mosquito species that were geographically located on various land cover as well as possible elevated 
obstructions, such as intermittently, seasonally, shade-canopied hilltops throughout Hillsborough County were 
identified using a 3-D digital elevation model (Figure 4a).This model was built in Geospatial 3-D Analyst in the 
embedded ArcGIS in the drone dashboard To determine the accuracy of the signature foci indicated by the 
dashboard of the LULC,eco-georeferenced, capture points, the USF team flew the drone over the test site to 
recover the foci to evaluate the sensitivity and specificity of the captured, real time, signatures.  Drone flight plan 
maps for urban LULC (Figure 4b)  and rural LULC (4c ) were generated based on differentially corrected 
wayward GPS coordinates( with  a positional accuracy of 0.178m) to make sure that the drone was flown over 
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the  county abatement study site areas with precision and accuracy. The data was live streamed to ground 
stations, where personnel viewed the live footage using a multi-directional, mobile, hand held device ( e.g., 
Android technology, iphone). Mosquito abatement personnel in Hillsborough County and USF researcher 
collaborators measured the real time, UAV captured, breeding site, capture point,  ArcGIS, spectral signatures 
(i.e.,known habitat targets) at 31 centimeter spatial resolution. 

Figure 4a.  A 3-D DEM    Figure 4b a drone wayward flight map of an urban location   and   Figure 4c over 
a rural location in Hillsborough County 

   We performed a log transformation using the geo- spectrally decomposed 0.31, meter resolution, real time 

imaged, habitat endmember, geosampled, capture point, LULC and RGB signature  datasets  generated in 

ArcGIS. For example, for an eco-georeferenced, birdbath, capture point, backyard, Ae. aegypti, water stagnant, 

artificial, container habitat in an urban residential geoclassified  geolocation, the UAV model revealed that the 

surface reflux included the waveband ratio of 13% red, 61 % blue and 26% green (see Figure 5).  

Figure 5: Ae. aegpyti aquatic larval/pupal habitat superbreeder backyard signature with the capture point GPS 

coordinate acquired from a UAV real time environment 

   All RGB, capture point, signature data was reviewed and contrasted in the real time platform for determining 

RGB wavelength, surface reflux, LULC properties for precision  forecast mapping  unknown, Ae. aegypti, 

larval/pupal, aquatic habitats in Hillsborough County. We optimized the UAV, spectral, signature library 

components from the UAV real time imaged, capture points which included object-based classifiers and a 3-D 

machine learning (ML) algorithm embedded in the real ArcGIS platform    
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      Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems 

use to effectively perform a specific task without using explicit instructions, relying on patterns and inference 

instead. It is seen as a subset of artificial intelligence.( Bishop 2006),  An ML algorithm [Random Forest(RF)] 

was applied to our real time, geosampled, UAV, Ae. aegypti,,gridded, LULC  datasets in ArcGIS which included 

the  spectral signatures and priori information extracted from the capture point known locations. RF is a mixture 

of tree predictors that are randomly constructed by bootstrapping from the complete dataset with replacement 

but having the same distribution as the full dataset. Random forests of 1000 trees were trained using the 

VECMAP software (http://www.vecmap.com) in the real time dashboard. Six capture point, Ae. aegypti habitat, 

predictors were randomly selected at each node. Given that the input, capture point, eco-georeferenced, LULC 

datasets were balanced, the cut-off value to differentiate between suitable and unsuitable habitats was 0.5.  

 The ML algorithm built a predictive, explanatory, mathematical model  from the remotely retrieved, capture 
point,eco-georeferenced, LULC datasets and their seasonal, land cover  in ArcGIS (i.e., "training data") in order 
to make robust predictions of unknown, foci. In so doing, the specificity introduced by the coexistence of spectral 
and spatial, eco-georeferenced, Ae. aegypti, artificial water, container, habitat, time series, empirical,RGB 
signatures in the drone library widened the swath, real time, information, UAV retrieval capacity.  

     Subsequently, we employed an Ordinary kriged-based stochastic, real time model in Spatial Analyst 

employing the capture point Ae aegypti, habitat RGB, signature, waveband ratios as the dependent variable in 

a regression-based matrix in the real time dashboard ArcGIS module.   Next, to fit the LULC, capture point, Ae. 

aegypti forecast model, signature estimators, we employed an exponential empirical semivariogram in Spatial 

Analyst.  For each bin, the real time environment formulated the squared difference from the UAV geo sampled, 

eco-georeferenced, experimental plots and the real time, captured, RGB, frequency, count, discrete, integer 

values and then multiplied the signals by 0.5 to attain one empirical semivariogram signature value per bin in 

the real time dashboard. The binned orthomosics of the geosampled,LULC capture point’s revealed local 

variation in the semivariogram/covariance RGB signature, endmember values. The drone database recorded 

the GPS location of the potential super-breeder site as a pin on a Google Earth image.   

   The real time, resampled habitat, RGB values were then analyzed by grouping (binning) the empirical, 

semivariogram/covariance, eco-georeferenced, LULC, capture points together employing square cells that were 

one lag wide. In the dashboard real time  Geostatistical Analyst, the lag size and number of lags derived from 

the interpolated, RGB, Ae. aegypti capture point, signature ,wavelengths were iteratively adjusted to fit each 

prognosticated, eco-georeferenced, capture point. When the potential, hyperproductive, larval/pupal, capture 

point, habitat samples were located on a sampling grid, the grid spacing (1km x1km) revealed a good indicator 

of lag size in the dashboard. A rule of thumb is to multiply the lag size by the number of lags, which should be 

about half the largest distance among all sampled points (Cressie 1993).  We noted that the range of the fitted, 

real time semivariogram, UAV, capture point, RGB, signature, frequency, LULC model, parameterized 

estimator,unmixed dataset for the Hillsborough County, epi-entomological, intervention, study site was very 

small relative to the extent of the Ae. aegypti, ,capture point,  real time semivariograms. Conversely, if the range 

of the fitted semivariogram model is large relative to the extent of the empirical semivariogram, the lag size can 

be increased in ArcGIS (www. esri.com). 

     We employed the sub-meter resolution, RGB signature, UAV, seasonal, wavelength LULC, reflectance 
datasets for determining timing of immature, Ae.aegypti, mosquito immature productivity during the sample, 
capture point trials. The real time, geosampled, drone datasets were compared for optimal mapping of seasonal, 
mosquito, capture point, breeding site  foci  employing Fisher’s exact test on two-by-three contingency tables 
(e.g., two habitat   capture point geolocations using three landscape categories) with, imaged, UAV grid cells 
representing sampled RGB signature values for each experimental plot, for each  LULC category. All real time, 
drone exploratory, visual assessments were constructed in the UAV platform. Binomial sign tests, Fisher’s tests, 
and linear regression were performed also in the platform.  

     To consider complications from spatial autocorrelation, coefficients we plotted second order 
autocorrelation statistics in the real time ArcGIS dashboard using an eigenvector spatial filtering function( ESF). 
The ESF employed a set of synthetic RGB proxy variables, which were extracted as orthogonal eigenvectors from a weighted 
spatial filter matrix that tied  the  habitats together in space and then adds these vectors as control variables to a RGB  model 
specification. Here the real time UAV imaged spectral control variables identified and isolated the stochastic spatial 
dependencies among the eco-georeferenced, Ae aegypti, habitat,capture point, LULC observations, thus allowing model 
building to proceed as if the observations were independent. The real time ESF furnished a method to properly analyze 
an eco-georeferenced Ae .aegypti, geoclassified, real time, LULC,.capture point variable by effectively 
separating, spatially structured, random, RGB, signature components from trend and random noise present in 

https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Artificial_intelligence
http://www.vecmap.com/
https://en.wikipedia.org/wiki/Training_data
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the variable. Positive spatial autocorrelation ( i.e., like terms aggregating in geosapce ) in a remotely sensed, 
seasonal, eco-georeferenceable, LULC, vector mosquito, forecast endmember model partly results from light 
reflectance scattering, rather than being neatly contained in pixel capture point boundaries, hence spilling over 
into nearby habitat pixels measured by an overhead sensor [Jacob et al. 2008]. Spatial autocorrelation has 
many interprets: a nuisance parameter, self-correlation, landscape map pattern, a diagnostic tool, a missing 
variable, surrogate, pseudo-replicated data variable, a spatial process mechanism, a spatial spillover, and the 
outcome of areal unit demarcation. (Griffith 2003). Interpreting spatial autocorrelation in an iteratively, 
quantitatively interpolated sub-meter resolution, RGB signature, larval/pupal, habitat, capture point, LULC, eco-
georeferenced, grid-stratified, risk map can aid in determining seasonal, conspicuous trends, gradients, swaths 
or mosaics across an epi-entomological, intervention study site ( Jacob et al. 2011).  

   Autocorrelation statistics were determined in the interpolated, real time, Ae.aegypti capture point, RGB 
signatures sampled from the  LULC, eco-georeferenced, experimental plots in the UAV platform to determine 
clustering tendencies in the empirical, ento-epidemiological datasets. We considered a real time, UAV sensed, 
capture point, LULC, wavelength constant as a degenerate case (i.e., a constant with no variance) of perfect 
positive spatial autocorrelation: once the UAV sampled, interpolated, RGB value of the Ae. aegypti capture point 
constant was known at a single, eco-georeferenced, experimental epi-entomological, seasonal foci geolocation, 
it was known at all  LULC geolocations within a real time, dashboard, ArcGIS  interpolation algorithm. Next, we 
considered an eco-geographically sampled, real time,  capture point, LULC variable that portrayed a north-south 
(or east-west) linear trend across a  vulnerability, forecast, Ae. aegypti habitat, seasonal, UAV, capture point, 
LULC eigenvector map. This UAV, real time, sampled, Ae. aegypti ,LULC, parameter estimator dataset had a 
mean of zero, hence we assumed it may be  geometrically orthogonal to and uncorrelated with the capture 
point, , wavelength constant. We also assumed that the north-south and east-west, oriented, linear trend, 
gridded,  LULC, capture point, signature, also were orthogonal and uncorrelated. The UAV, real time, 
geosampled, LULC variable  with mean zero whose RGB wavelength  magnitudes formed a 3-dimensional 
symmetric mound ( i.e., seasonal,  hyperproductive, LULC,eco-georeferenced,  capture point, Ae. aegypti 
larval/pupal, artificial water container, experimental habitat foci) in the center of a forecast vulnerability, real time 
map  constituted other mutually orthogonal and uncorrelated, signature, LULC, capture point, UAV, gridded, 
map patterns. Consequently, these real time UAV sampled, wavelength variables displayed maximum levels of 
positive spatial autocorrelation which was describable as global clustering patterns in the U real time dashboard. 
Alternating sequences of prolific, Ae. aegypti, seasonal, larval/pupal, habitat, capture points with either an east-
west or a north-south orientation portrayed moderate positive spatial autocorrelation, and constituted regional, 
LULC map patterns. Alternating sequences of smaller, less productive, Ae aegypti larval/pupal habitats with 
either an east-west or a north-south orientation portrayed weak positive spatial autocorrelation, and constituted 
local, real time, mappable, capture point, LULC patterns. This fragmentation continued through randomness 
(zero spatial autocorrelation) based on the capture point ,LULC arrangements of increasingly alternating habitat 
sampled values (i.e., single value mounds and basins) in the Hillsborough study site which subsequently 
portrayed increasing negative spatial autocorrelation ( i.e., dissimilar aggregation of  Ae aegypti, habitat, RGB 
attributes in geospace). Most substantive, capture point,LULC, habitat, RGB  signature, wavelength variables 
have geographic distributions that can be described by linear combinations of some subset of  mutually 
orthogonal and uncorrelated wavelength varying sized, vector arthropod, mound-basin (Jacob et al. 2015). 

     Leveraging our research team's expertise, the app interface and experiences was built employing the 

Unity game engine software (Kim et al. 2014) and Vuforia 6 SDK (Ibanez 2013). The resulting app was functional 

for both Apple and Android devices as necessary.  

     The app is geared towards, real time, monitoring and surveillance of  seasonal, capture points, Ae aegpti, 

mosquito, habitats and their geographic locations for mapping, unknown, prolific foci in a stochastic iterative 

interpolator.The app can take eco-georeferenced, seasonal, UAV, real time, captured, RGB signature ,iteratively 

interpolated datasets and identify LULC properties where statistically significant clusters of Ae aegypti, 

superbreeder breeding site, habitats are throughout a county abatement, intervention stusy site The drone can 

record the capture point GPS location of a seasonal, mosquito habitat geolocation as a pin on a Google Earth 

street map in seconds. Then county-level, control personnel can visit the tagged properties and encouraged or 

enforce the treatment of the breeding site. The app provides the most optimal direction to the capture points by 

mapping out the routes for multiple geographic markers in real time. There is also a feature for control personal 

to complete a report and mark a geographic location in Hillsborough County as “Complete” or “Not Complete”, 

to verify the signature captured was the Ae aegypti habitat breeding area as indicated by the real time, UAV 

platform. The platform has the ability to include comments and upload photos. Data maybe  stored in an ArcGIS 

database (spectral library) for future analysis, and to determine if a repeated trend occurs at specific abatement 

study site.  
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 The app is able to plot photos, as well as measure distances between mosquito habitats for determining 

pertinent statistics (e.g., real time, RGB signature covariates of prolific, seasonal, capture point, eco-

georeferenced LULC sites). Control personnel are now able to download and open saved seasonal, Ae aegypti, 

habitat, and land cover maps. They are able to pan, zoom, and locate breeding sites in real time, on time series, 

forecast, signature maps using GPS, pin-points overlaid onto Google Earth TM data on their smart phones. The 

users may then export the created place marks (e.g., GPS pinpoints associated to an unknown, prolific, Ae 

aegypti, aquatic, habitat foci to eco-georeferenceable, capture point geolocation) to various formats and share 

the signature data with other  County personnel and researchers in real time ,A real time iOS app can be 

interfaced with a differentially corrected GPS (DGPS) mobile device to provide spatial coordinates for all 

superbreeder Ae. aegypti , specified, sensor readings. The overhead method can allow the user (county 

mosquito control personnel) to specifc.capture point, Ae. aegypti, foci, GPS coordinates and the immature 

habitat signatures on any property based on the spectral reflection generated by the habitat signatures.  The 

end result of the UAV platform is readily available unknown,eco-georeferenced,  geolocations of seasonal, 

aquatic, vector, mosquito larval/pupal, capture point, habitat foci, on simulated web maps and exportable 

GeoTIFF drone, orthomosaic, 3D, topological, LULC sub-meter resolution, RGB sub-meter resolution signatures 

with various 3-D, products in a spectral library in a mobile, ArcGIS, real-time, dashboard module. These capture 

points can be demarcated with differentially corrected GPS coordinates (with a positional accuracy of 0.178m), 

in a deliminated text file. 

3 SCENARIO PLANNING, EXPERIMENTAL FUTURING THROUGH PREDICTIVE ANALYTICS 

Predictive analytics and computational models can provide public health officials with risk profiles, resource 

estimates and vulnerability assessments to support better mitigation, preparedness, response and recovery 

capabilities in the face of a natural disaster. As discussed, employing Real-Time UAV surveillance mapping to 

support identifying geolocations of vector-borne disease superbreeder sites, is one such tool. With the onset of 

these climate-related disasters and the possibility of mass migrations, scenario planning provides a well-

established methodology to address such uncertainty about the future occurrence and impacts of climate-

related events. With spatial-temporal analysis described that geo-locates superbreeder sites, the stage is set to 

integrate social disparity and vulnerability models, ecological perspectives and public policy to support an 

integrated vector management approach. As noted in Bardosh et al (2017:11), ‘…addressing VBDs into the 

future demands that we take a health systems approach, in terms of strengthening existing initiatives, the ability 

to translate knowledge into action and the capacity for organizations to promote community-based efforts’.  

The dynamic complexity and uncertainties associated with climate change and extreme weather events, make 

scenario planning ripe for exploitation in exploring the public health implications of such natural disasters. 

Schwartz et al. (2019:133) describes scenarios ‘… as challenging descriptions of alternative future states (also 

referred to as “futures”) that are relevant to a strategic decision and are representative of plausible developments 

in the external world’. Combining scenario planning and predictive analytics supports an experimental furturing 

framework that informs public health strategy development and strategic interventions. Extreme weather events 

can cause first order disasters and second order public health emergencies. Through predictive analytics 

described, vulnerability analysis (biophysical, social, spatial) can be assessed. Scenarios emerging from this 

can support across the disaster management domain (mitigation, preparedness, response and recovery).  As 

such this takes experimental futuring to a new level of impact: in effect, linking future, predictive analytics with 

strategy.  

It operationalizes plausibility-based scenarios characterized by increasing uncertainty and complexity and 

reframes the strategic discourse with real-time data. It is about proactive, forward looking, anticipatory futuring. 

The hazard of place model (Cutter, 1996) thereby becomes operational.  

4 CONCLUSION 

Climate change and the increase in the severity of extreme weather events and natural disasters has 
compromised public health conditions particularly in vulnerable communities thereby highlighting disparities 
across populations defined spatially.  The complex spatial-temporal dynamics associated with climate related 
events, social, economic, political and environmental problem space influence the emergence and distribution 
of vector-borne diseases (VBDs) thereby shaping the public health landscape. As noted by Cutter et al. 
(2000:717), ‘the social and biophysical vulnerability elements mutually relate and produce the overall 
vulnerability of the place’.  Here we developed a customized, iOS application (app) for identifying geolocations 
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of superbreeder,  Aedes aegypti, capture point, habitat properties in Hillsborough County from real time 
acquisitions of  sub-meter resolution ( e.g., 30 centimeter),  land use land cover (LULC) images obtained from 
a drone unmanned aircraft. This real-time, predictive analytic capability changes the playfield with respect to 
scenario planning to support public health strategic intervention initiatives.  
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