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ABSTRACT 

The cloud-based platform Google Earth Engine was used to evaluate the changes of the Normalized Difference 

Vegetation Index (NDVI) on a lowland reach of the Po River, Italy. Using the 30m resolution Landsat8 images, 

the study covered the April-October growing season in the 2013-2017 period and considered three different 

zones: a curve, a central bar and an island. Observing the variations of the NDVI across the areas it is possible 

to retrieve qualitative information about the vegetation encroachment and the correlated changes of the local 

river morphology. In the case of the curve, the inner bank was subjected to deposition and the vegetation 

improved this trend, stabilizing the bar and moving the current towards the outer bank, more stable. As for the 

central bar, the plants’ encroachment contributed to increasing the dimension of the bar, providing additional 

room for future plants and changing the bar morphology towards a stable island. In the third case, the island 

was already formed, and the NDVI remained almost constant during the observed period, indicating that plants 

have already stably colonized this area. The NDVI was correlated to the water discharges measured upstream 

of the study sites, pointing out a slight dependence of the riparian vegetation growth from the water flow and on 

the seasons. However, such a correlation is not yet well explained because of the short temporal horizon here 

evaluated. 
This paper represents a first attempt to use the free service Google Earth Engine to characterize the medium-
term behaviour of riparian vegetation establishment on different fluvial landscapes, improving our knowledge 
about the reciprocal feedback between hydrology, fluvial morphology and plant dynamics at the reach scale. 
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1 INTRODUCTION 
Nowadays, the human pressure on alluvial rivers is constantly increasing, affecting all the components at 

different time scales. The effects of transient hydrology, driven by climatic or anthropogenic conditions, on the 
riparian vegetation and the bed morphology are not immediate, and therefore a longer and large-scale record 
should be considered to catch them properly. To correctly model the water-sediment-vegetation interactions in 
fluvial environments it is necessary, therefore, to adopt adequate monitoring techniques like satellite imagery, 
which cover a longer period with a good resolution and can be easily handled for specific purposes. 

The use of satellite imagery for evaluating changes of different environmental parameters at manifold 
spatiotemporal scales is becoming very popular in recent years, being correlated with the improvement of 
computational tools. Many commercial and freeware services are rising for handling satellite information, 
providing scientists and practitioners with the opportunity to study the dynamics of the natural and anthropic 
environment also in areas otherwise hardly difficult to reach (e.g., Bizzi et al., 2016; Bechter et al., 2018; 
Monegaglia et al., 2018). 

Among others, the freeware service Google Earth Engine (GEE) is in use across a wide variety of disciplines, 
covering topics like vegetation establishment (Hansen et al., 2013; Tsai et al., 2018) water surface (Pekel et al., 
2016) and sediment field (Markert et al., 2018) dynamics, crop yield estimation (Lobell et al., 2015; Shelestov 
et al., 2017), land cover (Carrasco et al., 2019) and rice paddy mapping (Dong et al., 2016), urban (Patel et al., 
2015; Zhang et al., 2015) and flood mapping (Coltin et al., 2016), fire recovery (Soulard et al., 2016), as well as 
health risk mapping (Sturrock et al., 2014). Several applications to riverine environments (e.g., Edmonds et al., 
2016; Isikdogan et al., 2017) proved the reliability of this tool in evaluating the medium- to long-term dynamics 
acting at the reach scale. 

The contemporary long-time satellite remote sensing data provides an advanced way to monitor the surface 
vegetation dynamics in relation to climate and environmental variations at different spatiotemporal scales (Yang 
et al., 2013; Huete, 2016). Since the earliest work in the 1970s (Tucker et al., 1973; Rouse, 1974), the 
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Normalized Difference Vegetation Index (NDVI) is one of the most widely implemented remote sensing spectral 
index for monitoring Earth’s land surface (Robinson et al., 2017; Chu et al., 2019). The index capitalizes on the 
optical properties of the cellular structure of leaves: the photosynthetic pigments absorb radiation in the visible 
range of the spectrum and reflect radiation in the near-infrared (NIR) range. The simple formula of NDVI and its 
direct relationship to vegetation photosynthetic capacity is a proxy for a wide range of essential vegetation 
characteristics and functions (e.g., a fraction of photosynthetic radiation absorbed by the canopy, leaf area, 
canopy “greenness”, etc.) with countless applications in all the vegetation-related sciences. 

The Italian Po River represents a perfect example of the impact that human pressure can have on fluvial 
environments. Starting from the late ‘800 the river was straightened by levees, which frozen the planform 
configuration, while the extensive longitudinal bank protection works have altered the lateral sediment exchange 
sediments, with the consequent reduction and closure of many secondary channels (Lanzoni et al., 2015). The 
incision of the active bed has been further enhanced by the construction of dams and groynes (Maselli et al., 
2018), as well as by a massive sediment excavation activity in the period 1960-1990 (Lamberti and Schippa, 
1994). The morphological consequences of all these human interventions were initially quite fast and led to a 
significant and generalized deepening of the middle reach of the river in the period 1954–1980 (Castiglioni et 
al., 1999; Marchetti, 2002; Guerrero et al, 2013). Nowadays, the Po River is a relatively straight channel, having 
lost its meandering pattern especially in its intermediate and low reaches but, in the last decades, the 
anthropogenic pressure on the river decreased producing morphological quasi-equilibrium conditions, where 
eroded and deposited volumes tend to compensate each other (Lanzoni et al., 2015). 

Aside from geomorphic analyses, the impact of humans on ecosystem services is addressed worldwide with 
different techniques (de Jalón et al., 2017), but the influence of plants on river channel topography and the 
feedback effects are still poorly understood, in particular for a variable sediment supply (Diehl et al., 2017). 
Several experimental (Fergus, 1997; Choi et al., 2005; Bollati et al., 2014) and numerical (Nones et al., 2013; 
Eke et al., 2014) studies shown that a reduction of variability in water and sediment discharges fosters the 
encroachment of the vegetation over exposed bars and along the banks. The increase of vegetation cover 
definitely contributes to stabilizing the sediments and in further reducing the river wandering. However, reliable 
estimates at the reach scale and covering long periods are still lacking because of the difficulties in obtaining 
significant datasets. 

After the description of the study site, the main tools used in the analysis are briefly presented. On the one 
side, the preliminary results reported here provide some insights on the reciprocal feedback between the fluvial 
hydro-morphology and the riparian vegetation. On the other side, they pointed out the need for performing long-
term studies at the reach scale for having more reliable estimates, because of the scale involved. Aside from 
the present outcomes, also the future steps will be discussed in the paper, aiming to provide a general overview 
of using remote sensing imagery for evaluating the Po River dynamics during the more recent years. 

2 CASE STUDY 
The Po River is  the longest watercourse in Italy, flowing eastward across northern Italy for around 660 km 

(Figure 1a) and draining a considerably rich and diversified in geographical, demographic and socio-economic 
terms, but generally highly anthropized basin of about 74,700 km² (Domeneghetti et al., 2015; Musolino et al., 
2017). The long-term time series measured at the gauging station of Piacenza shows that the annual hydrograph 
has two peaks in discharge in autumn and spring, generated by rainfall and snowmelt, respectively (Zanchettin 
et al., 2008; Montanari, 2012). The long-term mean annual discharge at the Borgoforte (Mn) gauging station is 
around 1000–1300 m3/s.  
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Figure 1. a) Po River basin and b) the studied areas: curve (red), central bar (green) and island (blue). Details 
of the area based on a Google Earth image of February 2019: c) curve, d) central bar and e) Boschina Island. 

The vegetation encroachment was observed over three patterns downstream of Borgoforte: a curve, a 
central bar and an island (Figure 1b), characterized by a different vegetation cover in 2013. The vegetation over 
the curve (red area, Figure 1c) was practically absent, and the creation of a sand deposit in the inner bank 
moved the main channel towards the outer one. The central bar (green area, Figure 1d) is growing also because 
of the stabilizing effect of the vegetation. In this zone, during low flow conditions the secondary channel on the 
right results dry, but floods can reactivate it. The last studied part (blue area, Figure 1e) is the Boschina Island, 
close to the city of Ostiglia. Downstream of a railway bridge, the area is covered by permanent vegetation, 
mostly composed of bushes close to the river and trees in the inner part.  

Evaluating such different conditions providing us with additional information about the effects of the local 
hydrological variations on the various vegetation stages, and consequently on the local river habitat status 
(Nones, 2019). 

3 MATERIALS AND METHODS 

3.1 Normalized Difference Vegetation Index 
Satellite Remote Sensing (SRS) allows for the calculation of NDVI globally at a range of temporal intervals 

and spatial resolutions dependent on sensor characteristics and the satellite orbit (Robinson et al., 2017). The 
Landsat Mission, started in 1972, is the only uninterrupted long-term high-resolution remote sensing dataset 
that can provide a continuous historic NDVI record globally. Moreover, thanks to the improvements of the most 
recent sensors (5 ETM, 7 ETM+, 8 OLI), these 30-m resolution images are ideally suited for evaluating time-
series information at the local and regional scale. 

In the present application, the Landsat 8 Collection 1 Tier 1 composite is made from Tier 1 orthorectified 
scenes, using the computed top-of-atmosphere (TOA) reflectance (Chander et al., 2009). Landsat Tiers are the 
inventory structure for Landsat Collection 1 Level-1 data products and are based on data quality and level of 
processing. The scenes with the highest available data quality are placed into Tier 1, and include Level-1 
Precision Terrain processed data that have well-characterized radiometry and are inter-calibrated across the 
different Landsat sensors. All Tier 1 Landsat data can be considered radiometrically calibrated and geolocated 
consistently (root mean square error <12 m) across the full collection for all the sensors. 

The NDVI composites used in GGE are created from all the scenes in each 32-day period beginning from 
the first day of the year and continuing to the 352nd day of the year. The last composite of the year, beginning 
on day 353, will overlap the first composite of the following year by 20 days. All the images from each 32-day 
period are included in the composite, with the most recent pixel as the composite value.  

The NDVI is generated from the Near-IR (NIR) and Red bands of each scene (eq. 1), corresponding to the 
band 5 and 4, respectively, and ranges from -1.0 to 1.0.  
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
=

𝑏𝑎𝑛𝑑 5 −𝑏𝑎𝑛𝑑 4

𝑏𝑎𝑛𝑑 5 +𝑏𝑎𝑛𝑑 4
 [1] 

Negative values indicate the absence of vegetation (i.e., water and bare soil), while positive values denote 
the presence of plants. The NDVI is an indication of the vegetation density: the higher this metric, the higher the 
vegetation density and its maturity.  

3.2 Google Earth Engine 
Google Earth Engine (earthengine.google.com) is a cloud-based platform that can be used to process very 

large geospatial datasets, thanks to an Internet-accessible application programming interface (API) and an 
associated web-based interactive development environment (IDE). The platform is optimized for parallel 
processing to reduce computing time. The data catalogue houses a large repository, continuously updated, of 
publicly available geospatial datasets, including observations from several satellites and aerial imaging systems 
in both optical and non-optical wavelengths, comprising many environmental variables, weather and climate 
forecasts. The data are preprocessed to a ready-to-use but information-preserving form (Yu and Gong, 2013; 
Gorelick et al., 2017). 

Among the plurality of datasets freely available in GEE, for this application, the Landsat8 NDVI32days 
images were investigated. By means of ad-hoc scripts developed accordingly to the Earth Engine Data 
Catalogue (developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_ NDVI), 
the images were monthly averaged, discarding the ones highly affected by clouds, and adjusted for focusing 
only on the studied regions (Figure 1b). Afterwards, the statistics of each zone were automatically extracted by 
using a GIS environment. 

4 RESULTS AND DISCUSSION 
Aiming to capture the whole vegetation season of vegetation typically observed along this Mediterranean 

watercourse, the analysis considered the Landsat8 images acquired from April to October (Gumiero et al., 
2015). Discarded the images affected by excessive cloud cover (I.e., >20%) for avoiding bias due to clouds, the 
rest was averaged for obtaining one image each month for the period 2013-2017 (Table 1). 

Table 1. Available Landsat8 images. 
2013 2014 2015 2016 2017 

APRIL X X X 
MAY X X X 
JUNE X X X X 
JULY X X X X 

AUGUST X X X 
SEPTEMBER X X X 
OCTOBER X X X X 

As visible from Figure 2, during the observed period, the mean NDVI slightly increased in all the three zones, 
even if the data are highly dispersed. This increment means a plausible encroachment of the vegetation, given 
that the local hydrology did not present significant changes that can affect the estimate. 

The higher increment is observable for the bar (green squares), where the plants encountered a more 
suitable habitat for growing during the whole year. A similar behaviour is observable in the case of the Boschina 
Island (blue dots), which presents a sandbar in the upstream part of the island (Nones et al., 2018). The lower 
NDVI increase is measured along the curve (red diamonds), where the river results more active, therefore 
preventing a fast vegetation encroachment.  

As for the data dispersion, the ones related to the evolving patterns observed in correspondence of the bar 
and the curve have a similar coefficient of determination (R2=0.25 for the bar, R2=0.28 for the curve), while the 
more stable island has R2=0.07. This can be correlated to the vegetation characteristics: the more the plants 
are established, the less the NDVI is a good metric in estimating the evolutive trend. 

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_32DAY_
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Figure 2. The trend of the mean NDVI for the three zones (curve in red, bar in green, island in blue), during the 
period 2013-2017. 

Aside from analyzing the absolute trend of the mean NDVI, it is interesting to evaluate it as a response to 
the local hydrological changes (Figure 3). 

Figure 3. Comparison of the mean NDVI for the three areas (curve in red, bar in green, island in blue) with the 
measured discharge (black dotted line) at the upstream gauging station of Borgoforte (Mn), during the period 
2013-2017. 

If compared with the water discharges measured at the daily scale just upstream of the studied zones, one 
can observe that, even if the winter floods are necessary to re-establish the water table level, their recent 
reduction both in terms of magnitude and duration can only slightly contribute to the vegetation growth. 
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On the other part, the prolonged drought observed during the 2015-2016 period, characterized by dry 
summers and very low winter flooding events, stressed the vegetation, reducing the duration of the growing 
season. As visible, indeed, the values measured in October 2015 and April 2016 were very low if compared with 
the usual values measured in those months. However, once adapted to more constant, even if lower, flow 
conditions, the vegetation is able to re-establish itself in a proper manner, colonizing the sand deposits during 
the summer and fixing the soil, preventing the possible river wandering in the case of higher flow conditions. 

5 CONCLUSIONS 
The use of the free tool service Google Earth Engine permitted an estimate of the vegetation changes in 

different zones of the Po River, in Italy, analyzing the variation of the NDVI during the period 2013-2017. The 
study points out the existing weak correlation of such changes with the local hydrology, even at the short-time 
scale of observation. 

The preliminary analysis reported here highlighted that, on the one part, a prolonged and significant drought 
can negatively affect the fluvial vegetation, potentially reducing its growing season and the opportunity to 
colonize new spaces. On the other part, the reduction of the flow discharge variability and especially the 
decrease of extreme events can provide good conditions for the vegetation encroachment, but only in the case 
of a rather constant flow around the long-term mean values. Indeed, in these conditions, the new plants are not 
disturbed by flooding events or strong droughts and have time to stably colonize the inner parts of the curve 
and the sandbars, changing their patterns towards vegetated islands. Once established, the plants can then 
continue to freely grow over such islands 

Because of the short temporal horizon studied the conclusions derived here should be corroborated by future 
research, observing the river behaviour for longer periods and accounting for analyses at the reach scale, with 
the final aim to provide an estimate of the future bio-morphodynamics trend of the Po River as a response to 
human- and naturally-driven changes of the hydrology. 

From this application, one can notice that the use of remote sensing imagery can be helpful in addressing 
fluvial hydro-morphological and vegetational changes at the reach scale, suggesting future trends on the basis 
of past observation, which can be eventually modelled with appropriate numerical codes. 
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