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ABSTRACT 

In Colombia water resources planning and management is supported mainly by technical instruments such as 
the National Water Assessment Study, which are based on the calculation of several different management 
indices, estimated solely with in-situ data. In this study we explore the complementarity of two global 
reanalysis datasets coming from the EartH2Observe project (WFDEI and MSWEP) and the use of rigorous 
regional and local hydrological modelling for deriving two water management indices, the Aridity Index and the 
Water Regulation Index in the Magdalena-Cauca macrobasin.  Results show that the conjunctive use of in-situ 
data, global reanalysis, and hydrological modelling allows updating the indices calculation more often and that 
the results are consistent compared to the indices values estimated only with in-situ data. Besides, the 
methodology implemented has capabilities for being used in scarce data regions and can contribute to 
assessing uncertainty in the indices estimations.  
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1 INTRODUCTION 
Integrated water resources management requires a proper assessment of the state and fluxes of the 

hydrological variables in a basin. Gauging these variables allows to evaluate the state and evolution of a 
hydrosystem, but is cumbersome for decision-making processes related to water management and planning, 
which need rapid and very easy data interpretation. In these cases, water indices are an asset which can 
contribute to the identification of trends and changes in the state of water resources in a watershed. Besides, 
water indices can be easily integrated into technical instruments or decision support systems at different 
spatial scales. 

In Colombia for example, the technical instrument that supports, at a country level, water management 
and planning is the National Water Assessment Study (ENA, for its acronym in Spanish) which evaluates, 
approximately every four years, the state of the national water resources. The ENA is mainly based on the 
estimation of several water indices associated with natural water supply, hydrometeorological regime, water 
demand, water quality, and others. Among the indices related to the natural regime of a basin, the widely 
known Aridity Index (AI) and the Water Regulation Index (WRI) (IDEAM, 2010) are included. Although in-situ 
measurements are essential to determine the state of the water resources through the indices estimations, the 
limitations and lack of hydrometeorological information in some regions can translate into weaknesses in the 
analysis that derive into problematic and not that well-informed decisions.  

Related to this is the fact that since the 1980s, the number of gauges that directly acquire 
hydroclimatological information started to decline in several parts of the world (UN-WWAP 2015; Lorenz and 
Kunstmann 2012; Vörösmarty et al. 2001). For example, in the Magdalena-Cauca macrobasin, the most 
monitored watershed in Colombia, the number of rain gauges reduced from around 1,500 in the 1980s to 
nearly 1,000  in the 2010s. 

Complementary sources of information such as Earth Observations (EO) (Cruz-Roa et al. 2017; Garcia et 
al. 2016) and reanalysis simulations (Schellekens et al. 2017; Weedon et al. 2014) are useful for coping with 
the reduction of in-situ measurements (García et al. 2016; Enrique and Estrada 2016; UN-WWAP 2015). 
Although these modern sources of information have not been widely used in the calculation of water indices 
around the globe, the conjunctive use of in-situ, EO and reanalysis data, has produced improvements in the 
quantification of water resources in Colombia (Elgamal et al. 2017). 

In this sense, the aim of the research here reported was to assess the usefulness of complementary 
datasets to the in-situ data in the calculation of the AI and WRI water indices in the Magdalena-Cauca 
macrobasin in Colombia. 
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2 CASE OF STUDY: THE MAGDALENA-CAUCA MACROBASIN 
The Magdalena-Cauca macrobasin (MCMB) is the main hydrographic system in Colombia, in socio-

cultural and economic terms. With 30 million people, and 257.000 km2 (Restrepo et al. 2016), it concentrates 
80% of the GDP, and 80% of the Colombian population. Its terrain presents high complexity, mainly due to the 
Andes Cordillera that crosses from south to north, creating two alluvial valleys (Cauca and Magdalena 
valleys), where these two main rivers flow, as depicted in Figure 1.  

Figure 1. Location of the Magdalena - Cauca macrobasin in Colombia. 

The Magdalena River flows through around 1,600 km before reaching the Caribbean Sea. Its main 
tributary, the Cauca river, flows through 1,015 km. The mean annual discharge at Calamar, the gauging 
station closest to the mouth, is around 7,200 m3/s, with maximum discharges happening in November, and 
minimum in March, with a range between 4050 and 10,200 m3/s (Camacho et al., 2008). Both rivers start at 
the south, and flow through the inter - Andean valleys that form the three mountain ranges, before reaching 
the Caribbean plains, where the Cauca river pours its waters into the Magdalena river (Cormagdalena, 
IDEAM, 2001).   

The MCMB is under the influence of the Intertropical Convergence Zone (ITCZ), and due to its movement 
along the year, the upper and mid parts of the basin present a bimodal precipitation regime, with two peaks in 
April-May and October-November, and two dry periods between them, while the lower parts of the basin 
experience a single rainfall season from May to November (Poveda 2004). 

3 DATA AND METHODS 

3.1 Meteorological datasets 
Three different meteorological datasets were considered in this research. Two of them have global 

coverage, whereas the third one is a local product based on in-situ data interpolations. The three products 
correspond to distributed daily time series at a scale of 0.1° (approximately 10 km at tropical latitudes) for the 
period 1980-2012. These datasets were used to force the hydrological models, which outputs were 
considered in the water indices calculations.  

The so-called quasi-observed dataset is a local product obtained from the records of precipitation and 
temperature for the climatological stations operated by the Institute of Hydrology, Meteorology and 
Environmental Studies in Colombia (IDEAM) in the MCMB. Daily data for precipitation, maximum and 
minimum temperature (for approximately 2,200, and 500 stations, respectively), was interpolated using 
different geostatistical methods (Rodriguez et al., 2019). Due to the incompleteness of the wind speed in-situ 
time series, this variable was retrieved from the WFDEI dataset (Weedon et al., 2014), and downscaled to 
0.1° using a geographical correspondence method. Daily evapotranspiration was estimated using the 
interpolated maps of temperature and the Hargreaves equation. In spite of having other ET datasets available, 
such as GLEAM and ET calculated from reanalysis information, we decided to use local information as much 
as possible, as a benchmark to evaluate the global products. 
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The second meteorological dataset, stemming from the ERA-Interim reanalysis (Dee et al. 2011), is the 
WFDEI dataset that provides sufficient information to force hydrological and land surface models. It is a 
benchmark meteorological product that seeks to promote the comparison between hydrological and earth 
system simulations. Its spatial resolution is 0.5° (nearly 50 km), and it was downscaled also with the 
geographical correspondence method to 0.1°. 

MSWEP is the third dataset investigated. It is a precipitation product that has been widely used, which 
main feature is the optimal merging of the diverse gamut of precipitation products (Beck et al., 2017). It is 
based on the climatology values given by CHPclim, bias-corrected with local datasets and also includes 
correction using streamflow observations through inverse water balance calculations. In this product, rainfall 
time series at different scales are derived from precipitation anomalies of the different satellite, reanalysis and 
interpolated gauge products that were chosen to create it. Its spatial resolution is 0.25° (nearly 25 km), and in 
this project, it was also downscaled to 0.1°. 

3.2 Regional hydrological models 
Three regional hydrological models were implemented in the MCMB, using a split-sample approach, and 

the quasi-observed dataset. The period 1982-2000 was used for calibration, and 2001-2011 for validation. 
Daily observed streamflow data on 88 control points throughout the MCMB were used to compare and 
evaluate different performance metrics. After calibration, the three models were forced using the optimal 
parameter sets obtained from the quasi-observed data calibration, and the two meteorological forcings 
(MSWEP and WFDEI). The general structure of each of the models is presented below. 

3.2.1 Dynamic Water Balance - Budyko Model 
The Dynamic Water Balance (DWB) (Zhang et al. 2008) model is based on the concept of limits, as 

stated by Budyko regarding real evapotranspiration respect to potential evapotranspiration and precipitation. 
This concept was used into a dynamic water balance model, with four parameters and two conceptual tanks, 
that represent the main hydrologic processes on the surface. 

The model implemented uses regular cells with 0.1° x 0.1° size. The calibration methodology followed 
GLUE, and runoff results were converted into discharge values, using an areal relation, with results at monthly 
time resolution. 

3.2.2 Variable Infiltration Capacity Model 
The regional Variable Infiltration Capacity (VIC) model (Liang et al. 1994, Zhao & Liu 1995) is a physical 

based model which uses a water balance equation and calculates runoff from three soil layers. To represent 
the infiltration, it uses the Xinanjiang model, while the Penman-Monteith equation is used to estimate 
evapotranspiration. 

The model was implemented in a 0.1° x 0.1° regular cell, using a mosaic approach (it means that every 
single cell is split into multiple land cover types), and a daily time step. The calibration followed the GLUE 
methodology. Likewise the DWB model, runoff was converted to discharge based on drainage areas. 

3.2.3 OpenStreams wflow-hbv 
The OpenStreams wflow-hbv model (Schellekens, 2014) is based on the conceptual HBV-96 model 

(Saelthun, 1996) in a distributed grid-based way. Inside each cell, the water balance is calculated considering 
three components: precipitation - snow, soil moisture, and runoff. Daily runoff is the result of direct runoff, 
interflow from upper soil layer, and baseflow from the lower soil layer. The model uses a kinematic wave 
function for routing the total runoff obtained for every single cell, to get the river discharge. 

The model was implemented at 1 km x 1 km cell size. The difference in spatial resolution for this model is 
due to a prior application of the model on sub basins of the MCMB, that showed that the 1 km grid size was 
adequate for the modelling purposes. The calibration process used a PSO search algorithm on the 88 control 
points across the MCMB. 

3.3 Water management indices 
Two water indices were calculated in the MCMB to better understand fluxes of water between the 

atmosphere and the land surface, and over the land surface. 
First is the Aridity Index - AI (UNEP, 1997), which relates meteorological inputs (precipitation, or water 

available on the surface) and land surface responses to those inputs (evapotranspiration, or energy available 
on the surface), and so, allows understanding the fluxes and their constraints. The relationship could take 
several different forms, but here we used the following expression:

AI = P/PET [1] 

Where AI is the Aridity Index, P is the mean annual multiyear precipitation, and PET is the mean annual 
multiyear potential evapotranspiration. 
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Second is the Water Regulation Index - WRI (IDEAM 2010). This index connects flow regime and basin 
conditions through a relationship between values from the flow duration curve. The formula used to calculate 
the WRI is: 

WRI = Vp / Vt [2] 

Where Vp is the volume under the mean discharge in the flow duration curve, and Vt is the total volume 
under the flow duration curve. 

This expression is commonly used in Colombia, especially in the ENA, as a proxy for the general basin 
conditions, including flow regulation and drainage characteristics, and general land cover and soil features. 
Values of 1 mean a basin with large regulation which maintains a constant flow throughout the year (even for 
low precipitation periods), while lower values mean that the basin presents a high flow variability. 

WRI is commonly computed from a daily flow duration curve, but a flow duration curve with another time 
aggregation can also be used (for example, monthly time-step data). However, a daily time-step is adequate 
to capture basin scale fluxes and hydrologic variability on the flow regime. For this reason, the daily flow 
duration curves were used to calculate WRI values, except for the DWB model, due to its time-scale 
limitations. 

3.4 Methodology 
A general representation of the methodology is depicted in Figure 2. In order to calculate and compare 

the values of AI, the three above mentioned meteorological datasets were combined with the equation [1] and 
then the percent bias (PBias), with respect to the quasi-observed AI results, was calculated. 

Simultaneously, the three hydrological models were forced with the three meteorological datasets in 
order to obtain simulated streamflow values, that were later used to calculate the WRI, using equation [2]. 
Consequently, we compared the percent bias between the estimates of the WRI made by the hydrological 
models, with the WRI values calculated from observed streamflow data. 

Figure 2. General framework of the procedures followed to calculate the water management indices, from the 
meteorological datasets and the regional hydrological model outputs. 

4 RESULTS 
Results are split according to the calculated index. This order permits to analyze the results from the 

precipitation datasets, through the AI index, and the results from the hydrological modelling, through the WRI 
index. 

4.1 AI results 
As depicted in Figure 3, the MCMB is mainly an area with water surplus, with around 60% of the 

MCMB classified as “humid”. There are also some “sub humid” areas on the southwest (on the Valle del 
Cauca province, near the city of Cali) and on the southeast (on the Magdalena Valley and the Altiplano 
Cundiboyacense, a high plateau where Colombia's capital, Bogotá, is located). 

To the north, near the Magdalena river outlet, there is a drier region, which in general is classified as “dry 
subhumid” by the quasi-observed dataset, but that could be classified as “semi arid” by the WFDEI and 
MSWEP datasets. This area presents lower precipitation and higher evapotranspiration rates, due to its flat 
geography and different precipitation patterns, which results in a higher AI value.  
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Figure 3. Distributed AI as calculated using (a) the quasi-observed, (b) WFDEI, and (c) MSWEP precipitation 
data. AI < 0.05, Hyper-arid; 0.05 < AI < 0.20, Arid; 0.20 < AI < 0.50, Semiarid; 0.50 < AI < 0.65, Dry subhumid; 
0.65 < AI < 1.00, Moist subhumid; and AI >1.00, Humid. Source: Rodriguez et al. (2019) 

When comparing, through the PBias, the quantitative differences in AI values, between the three 
datasets (Figure 4), the differences in the datasets values arise. For example, MSWEP overestimates on the 
southern areas, where the Andes mountains are located, and over a small area to the north, on the Sierra 
Nevada de Santa Marta mountains, while in general, it underestimates on the northern areas, where flatter 
and warmer areas are located. WFDEI, on the other hand, does not present this separation between the 
mountainous and flatter zones, but it seems to give mixed results: areas located at the south can show 
underestimations or overestimations, which seems to happen also at the north.  

Despite these differences, it is evident that the AI derived from these two datasets show the same trends 
that the quasi- observed data, for both qualitative and quantitative analysis, and could provide an easy way to 
complement the evaluation solely based on in-situ data, which is especially important in areas with information 
limitations or when there is a need to update the index estimation in a faster and more complete way. 

Figure 4. Distributed PBIAS differences between the quasi-observed AI values and AI values calculated from 
(a) WFDEI, and (b) MSWEP
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4.2 WRI results 
Each forcing dataset was used to run each of the regional hydrological models, obtaining three results by 

model, and in total 9 different outputs. For comparison purposes, these outputs were used to compute WRI 
point values, located where there is a streamflow gauge station.  

Figure 5 presents the qualitative values of the WRI index calculated with the observed streamflow values. 
It can be seen that the moderate and low WRI categories are mainly located in mountainous subbasins, whilst 
the high and very high regulation categories are along the two main streams (the Magdalena and the Cauca 
rivers) and in the northern savannas. 

Figure 5. Water Regulation Index (WRI) calculated with observed data 

Figure 6 depicts WRI values from modelling experiments, for each forcing dataset. The first row displays 
the quasi-observed forcing results, the second row displays MSWEP outputs, and the third row displays 
WFDEI results. It is clear that the forcing dataset impacts the results of the index values, yet the results are 
mainly driven by the model structure. WFDEI and MSWEP produce an increase in the WRI classification in 
most of the streamflow gauges for VIC model, meanwhile, wflow-hbv results using the same datasets show a 
reduction on the WRI category. 

On the other hand, DWB model tends to decrease the WRI values, but these results are linked to the 
model time scale, the monthly seasonality of the precipitation datasets, and the over and underestimations 
from MSWEP and WFDEI, when compared to the quasi-observed data. 

Figure 7 shows the percent bias of the WRI values for all models and precipitation datasets, with respect 
to values derived from point streamflow observations. It is noticeable that the wflow-hbv and DWB WRI values 
have mixed tendencies, while the VIC model has a clear trend to underestimate WRI values. 

DWB displays an overestimation trend in the southern part of the basin that is reproduced in the other 
two forcings (WFDEI and MSWEP) but is less strong for WFDEI. In the north of the basin, there is a clear 
trend to underestimate when using WFDEI, but it is less clear for MSWEP, and it is not clear at all for the 
quasi-observed data. 

Wflow-hbv shows a clear overestimation of the WRI values in the Sogamoso river basin (middle east 
zone) for the three datasets. This trend is visible in the southern regions for the quasi-observed and the 
MSWEP datasets but is less clear for WFDEI (in this case, there are mixed tendencies). The northern zones 
present a tendency to underestimate, which is stronger for the WFDEI, and weaker for the MSWEP and the 
quasi-observed datasets. 

These results make clear the difficulties to compute WRI values based on regional hydrological modelling 
experiments. Regional hydrological modelling needs to use innovative techniques, in order to derive the 
uncertainty from sources like model structures, and inputs (precipitation forcings in this case). The use of 
hydrologic ensembles could improve the results while investigating the different uncertainty sources. 
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Figure 6. Water Regulation Index (WRI) calculated with the simulated runoff of the three hydrological models 
using the three different forcings. 
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Figure 7. Percent Bias of WRI point estimations obtained between model simulations using the three datasets 
against WRI derived from observed streamflow data. 

5 CONCLUSIONS 
Hydroclimatological data combination from different sources provides a helpful and low-cost way to 

calculate water management indices like the Aridity Index (AI) and the Water Regulation Index (WRI), which 
are currently used in Colombia to support the National Water Assessment Study, which is the basis for water 
planning and management at the national scale. In the study here reported, the combined use of global 
meteorological datasets, with observed data, and hydrological modelling results, has allowed the assessment 
of these two water management indices in the Magdalena-Cauca macrobasin. 

The two global meteorological datasets analyzed (WFDEI and MSWEP) showed good results for deriving 
the AI index, which is a proxy for water availability, when compared to calculations made using the in-situ data 
(quasi-observed dataset). Although there are differences between the results, the two global datasets capture 
the regional trends of the AI index that are observed from the results with the quasi-observed data. This is 
very useful for complementing indices estimations based solely on observed data. Moreover, the results give 
insights into the probable use of these two global meteorological datasets in scarce information areas, like the 
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Orinoco and the Amazon macrobasins in Colombia. This suggests the importance of establishing water 
indices comparisons in those areas, using multiple data sources, as a strategy to better assess water 
resources. Improvements on the global datasets can be performed using downscaling techniques based on 
topography or vegetation features, or by merging the meteorological products with in-situ time series coming 
from meteorological stations. 

On the hydrological modelling side, there are limitations in the estimation of the WRI index from the 
different models and forcing datasets investigated. DWB performs reasonably well, but its time scale does not 
allow to compute daily-based WRI values, and so, WRI values cannot be compared to observed data. VIC 
model presents an underestimation of the WRI values all along the basin, probably due to the model´s 
structure limitations. Wflow-hbv presents a good agreement in the WRI values compared to the observed data 
but presents limitations in the highland basins. In spite of these results, one of the main advantages of using 
distributed hydrological modelling is the possibility of estimating the WRI index in ungauged locations, yet the 
estimates should be treated with caution. 
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