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ABSTRACT 

In a context where the German Federal Ministry of Transport and Digital Infrastructure (BMVI) expects a 23% 
growth of traffic in inland navigation in Germany by the year 2030, a higher efficiency and an optimized logistics 
in traffic management are required. The BMVI-funded project Digital Skipper Assistant (DSA) had the objective 
to develop a cloud-based application to support inland navigation, able to calculate best routes and Estimated 
Times of Arrival (ETA). Contributing to the DSA, this study investigates the competence of artificial neural 
networks (ANNs) to predict water levels up to 10 days ahead in some crucial gauges of the Rhine River Basin 
in Germany. A multiple-outputs model based on long short-term memory (LSTM) networks was implemented, 
adopting as inputs firstly the water level measurements at specific gauges. In a second work phase, the water 
level forecasts of the hydrological model chain of the German Federal Institute of Hydrology (BfG) were included 
as additional predictor into the model, highly improving the results (the coefficient of determination R2 increased 
of about 20%). The LSTM model has been trained, validated and tested (respectively with 80%, 10% and 10% 
of the dataset) using the historical data and the BfG hindcasts from January 2008 until December 2015. The 
results of the model evaluation were very good (i.e. R2 around 90% for 7-days prediction). Several tests have 
been run during the DSA field test (from July 2018 to December 2018) and the results were promising. 
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1 INTRODUCTION  
The German Federal Ministry of Transport and Digital Infrastructure (BMVI, 2016) is expecting an increase 

of about 23% of traffic in inland navigation in Germany between 2010 and 2030. Due to few foreseen changes 
to the current infrastructures, a more efficient and optimized traffic management is demanded. In this context, 
the BMVI-funded project Digital Skipper Assistant (DSA) allowed the development of a cloud-based application, 
to support the inland navigation stakeholders, providing user-specific route guides and forecast information, for 
the first time in unique digital source. The DSA was a collaborative work between the management and 
technology consultancy firm BearingPoint GmbH (coordinator of the project) and BearingPoint Technology 
GmbH, together with the German Federal Ministry of Hydrology (BfG) and the Chair of Water Resources and 
Modeling of Hydrosystems at TU Berlin. 
        In this work, different machine learning (ML) techniques for water level forecasts in the Rhine River in 
Germany have been investigated. Artificial neural networks (ANNs) have gained considerable popularity in 
Hydroscience over the last two decades, and hydrologists have successfully implemented such approaches to 
predict water levels in various rivers over the world (e.g. the Anyangcheon Stream in Korea by Sung et al. 
(2017); the Reno River in Italy by Alvisi et al. (2006); the Tagliamento River in Italy by Campolo et al. (1999); 
the Mosel River in Germany by Stüber and Gemmar (1997); the Pisuena River in Spain by Crespo and Mora 
(1993)).  
        Compared to traditional hydrological models, ANNs are attractive for many water researchers, because of 
their low requirements of physical background (e.g. topography) and high toleration of input errors (Thirumalaiah 
and Deo, 1998). In addition, the possibility of extensive parallel processing and parsimonious data storage 
enable ANNs to execute often faster than numerical models (Tanty and Desmukh, 2015). Nevertheless, 
although the high performances of ANNs in Hydroscience have been widely proven, their shortages should not 
be ignored. The precondition of a good ANN application is both the quality and quantity of data available. It is 
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usually hard to achieve, as there are often not such long hydrological records available. The lack of physical 
concepts and relations is another major disadvantage of this methodology, resulting in no standardized way of 
choosing a network structure. The design of an ANN is usually based on the previous experience and preference 
of the developer instead of the physical aspects of the problem, which is why ANNs are sometimes difficult to 
reproduce (Govindaraju, 2000). 
       Many works have shown that ANNs can be very successful for short-term water level predictions (less than 
1 day ahead). However, the focus of this study is on the longer term, since it is more interesting for the 
stakeholders in inland navigation. Indeed, a survey reported by Meißner et al. (2018) demonstrated that many 
skippers would prefer an up to 7-days in advance forecasts to optimize navigation whereas longer-term 
predictions are also desired by them e.g. for a complete cycle of transport plan. Hydrological models usually 
take a long time (up to hours) to calculate long-term forecasting and may have many input noises included. 
Therefore, it is worth to explore the performance of ANNs in long-term forecasting, where still limited studies 
are available. In detail, the focus of this work – as part of the DSA project – was to investigate the capabilities 
of ANNs in predicting deterministic water levels up to 10 days ahead in some critical gauges of the German 
section of the Rhine River Basin. The word ‘critical’ is used to define those gauges, which are relevant for 
navigation in order to determine the maximum load during periods of low water levels.  

2 METHODOLOGY 

2.1 Artificial neural networks 
An ANN is a massively parallel-distributed computing paradigm consisting of many basic information-

processing elements (namely neurons or nodes) interconnected together (Haykin, 2009). Motivated by 
biological neural systems, ANNs have wide learning competence from historical data with high toleration of input 
noises, capable to implement complex operations and input-output mapping. Furthermore, their plasticity 
permits the developing networks to be retrained for the adaptation to the new environments. Therefore, ANNs 
are able to solve many real-world issues such as hydrodynamics processes, which can be highly nonlinear and 
complicated. The most common architecture of an ANN is multilayer (e.g. Figure 1), constructed by an input 
layer accepting inputs from the surrounding, an output layer releasing the network’s responses to its inputs and 
one or more layers in between named hidden layers (Liong et al., 2000).   

Figure 1. Topography architecture of a three-layer network which learns supervised (Liong et al., 2000). 

ANNs can be categorized into feedforward (FF) networks and recurrent neural networks (RNNs) regarding 
the direction where information flows. FF networks are the most widely used neural networks, having a relatively 
elementary structure compared to others. The neurons only have the connections subsisting in adjacent layers 
in an orientation to the nodes in the subsequent layer, and each link is joined with a synaptic weight indicating 
the influence of the two neurons at both sides on the input-output predictions. Due to this architecture, the 
factors which determine the outcome of a neuron in a layer are solely the inputs produced by the previous layers 
and the corresponding weights, and the information processes from the input to the output side (Govindaraju, 
2000).  

In comparison with FF networks, RNNs consider not only the current inputs but also the information 
received in the past stored into the neural inputs, achieved by their workable memories as well as loops existing 
in their hidden layers. The majority of linkages in RNNs is bidirectional and exists between a pair of neurons in 
the same layer, so the information can also travel in an opposite direction (i.e. from outputs to inputs) in RNNs, 
which highly upgrades the networks’ performance on the temporal association (Karim and Rivera, 1992). 
Benefiting from this distinguished structure, RNNs usually show their superiority on the issues regarding the 
sequential information such as natural language processing (NLP) and long-term time series predictions. The 
comparative study conducted by Nagesh Kumar et al. (2004) states that RNNs surpass FF networks on both 
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single-step ahead and multi-step ahead predictions with smaller architecture and less learning time. In addition, 
the research of Chang et al. (2014) pointed out the superiority of RNNs on detecting the lasting dependencies 
via their repeated outputs, which considerably diminish output instability. Given the proficiency of RNNs in long-
term forecasting, they were chosen as the computing tool for this study. 
       Network training, validation and testing are indispensable processes in the application of an ANN, which 
guarantee the network to generate same or similar outcomes as the targets, and it is possible to only have 
network training and testing when the dataset is small. Training (or learning) is an operation to minimize the 
error from output layer by the adaptation of the parameters involved in the network and the equation to compute 
the error is called the loss function, commonly using mean squared error in time sequence problems. Generally, 
two types of training exist: supervised and unsupervised. Most problems in Hydroscience implement the former 
algorithm which requires an additional teacher signal to conduct the training process (as illustrated in Figure 1). 
Validation, in some papers also named crossing training, is a process to prevent the network from the 
phenomenon of overfitting. The training of a network will be stopped at a certain time when the error relevant to 
the training set continues to decrease but that for the validation set starts to increase, and it is assumed that 
the optimal parameters associated with the network can be obtained after such training. Finally, testing is a 
process to evaluate the quality of a trained network using a brand new dataset as input, which originates from 
the same source as the training set and has never seen by the network during training (Govindaraju, 2000; 
Liong et al., 2000). 

2.2  Comparison with hydrological models 
       ANNs have many similarities as hydrological models, which are a simplified real-world system to simulate 
hydrological processes relying principally on cause-effect relationships based on mathematical equations (e.g. 
continuity equations) and /or empirical relationships (e.g. rainfall-runoff, storage volume-outflow) (Devia et al., 
2015; Hinkelmann, 2005). An ANN can be considered as a black box model, category where some hydrological 
models also fall in, which are capable to establish a functional relation between historical inputs and outputs 
with little background knowledge. Network training, validation and testing are also analogous concepts as 
calibration and validation in hydrological models. However, ANNs can be more versatile because of their flexible 
structures and no explicit mathematical functions inside (Govindaraju, 2000). Furthermore, ANNs often have 
higher computation speed than hydrological models. 

2.3  Long short-term memory networks 
       Within the RNNs, the long short-term memory (LSTM) networks were chosen for this study. The networks 
were first proposed by Hochreiter and Schmidhuber (1997) and later optimized by Gers et al. (2000) with the 
introduction of a forget gate in the constant error carousel (CEC) (highlighted with a red circle in Figure 2) in 
order to prevent linear rising cell states in the repeating modules, i.e. the units to loop in the hidden layers. Four 
interacting layers are included in the repeating modules, ensuring constant backpropagated error signals via 
time and layers. Benefiting from the distinctive architecture, LSTM networks have the competence to capture 
relations over 1000 time steps, regardless of input noises (Hochreiter and Schmidhuber, 1997). This leads to 
the excellence of LSTM networks on the investigation concerning long-term dependencies. Figure 2 illustrates 
the structure of an optimized LSTM repeating module, where its working process is also labelled.  

Figure 2. Repeating modules of a long short-term memory (LSTM) network (modified from Skymind, 2017) 
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(x: input; h: output; C: cell state; t-1 and t: the previous step and current step, e.g. ht-1—the output from the 
previous step) 

       The computing processes of a LSTM repeating unit and their relevant mathematical equations are as 
follows (Olah, 2015): 

 Step 1: Determine the information to forget from the cell state
The forget gate estbalished by a sigmoid activation function examines ht-1 and xt and derives a value in
the range of 0 and 1 for each number in the cell state Ct−1, where 0 and 1 identify “fully forget the
number” and “fully keep the number”, respectively:

ft = σ(Wf ∙ [ht−1, xt] − bf) [1] 

where, Wf and bf are the weight vector and bias related to the forget gate, and the function σ(∙) is the
signoid function presented in Eq. [2]. 

σ(net) =
1

1 + e−net

[2] 

 Step 2: Determine the new information to reserve in the cell state
The input gate constructed by a sigmoid activation function chooses the values to update and the input

activation function that produces a vector of new appropriate values Ct̃.

it = σ(Wi ∙ [ht−1, xt] − bi) [3] 

Ct̃ = tanh(WC ∙ [ht−1, xt] − bC) [4] 

where, Wi, bi and WC, bC are the weight vectors and biases associated to the input gate and the input 
activation function respectively. 

 Step 3: Update the cell state
The old cell state Ct−1 and f𝑡 calculated in Step 1 are multiplied to abandon the unnecessary information,

while the product of it and Ct̃ is completed to scale the new appropriate values from Step 2 satisfying

certain requirements. The new cell state Ct is the sum of these two results.

Ct = ft ∗ Ct−1 + it ∗ Ct̃ [5] 

 Step 4: Determine the output information based on the cell state
The output gate formed by a sigmoid activation function filters the output cell state, and then the output
activation function tanh scales the cell state between -1 and 1, whose outcome is later multiplied by the
result of the output gate. The multiplication is the final chosen output of the current cell:

ot = σ(Wo ∙ [ht−1, xt] − bo) [6] 

ht = ot ∗ tanh(Ct) [7] 

where, Wo and bo are the weight vector and bias relevant to the output gate. 

3 STUDY AREA AND DATASETS 

3.1 German section of the Rhine River Basin 
The study area is the German section of the Rhine River Basin up to the gauge Emmerich (shown in Figure 

3). The Rhine River is a transboundary river, connecting nine European countries, i.e. Austria, Belgium, France, 
Germany, Italy, Liechtenstein, Luxemburg, the Netherlands and Switzerland (Cioc, 2002). In Germany, the 
Rhine River is the most crucial waterway. Many German large cities are situated along the river, such as 
Cologne, Dusseldorf and the Ruhr area. It also takes a very important role in navigation and transportation, 
roughly 716 km of whose length are navigable for large ships (WSV, 2014). Approximately 80% of the water 
carriage in Germany happens on the Rhine River (toponline.org, n.d.). Oestrich and Kaub are two critical gauges 
among the river for navigation, because of their location and low water levels. Therefore, the gauge Oestrich 
was chosen as one of the gauges to study in this research.  
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         Shipping activities in the Rhine River are very vulnerable to long-term droughts which result in frequent 
low water levels. The capability of the navigation and the vessel speed are bound to the dropped water stages, 
inducing the increase of the travelling time and fuel consumption (Meißner et al., 2018).  

3.2 Datasets 
The datasets investigated in this study are the daily water level measurements and predictions at different 

gauges among the Rhine River from December 2007 to January 2016 for network setup and from July 2018 to 
December 2018 for the field test. All data were provided by the Federal Institute of Hydrology (BfG, Koblenz), 
also DSA project partner. The dataset includes the forecasts up to 10-days ahead at the gauges Oestrich, Kaub, 
Koblenz, Cologne, Dusseldorf, Ruhrort, Emmerich (daily and hourly). They were computed by the BfG 
hydrological model chain, consisting of a hydrological model, fed by external weather forecasts, for flow 
predictions and a hydrodynamic model for water level forecasts (Meißner et al., 2018). 

Figure 3. Study area, the German section of the Rhine River Basin from Basel up to Emmerich 

4 NETWORK CONFIGURATION 

4.1 Basic idea of model setup 
In a river system, a strong relationship exists between the upstream and the downstream, and thus the 

information at a downstream target is determined by its previous measurements and those at its influencing 
upstream gauges. For this reason and such physical linkage, this study focuses exclusively on water levels. 

4.2 Work flow 
The work flow of the model setup in this study is displayed in Figure 4. 
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Figure 4. Procedure of model setup 

        The raw data were provided by BfG as mentioned in the last section. Firstly, these data were cleaned, 
removing missing values, and transformed into the format of Figure 5, which includes teaching signals to 
supervise the training process. Then the data were separated into a training set (80% of the whole data), a 
validation set (10% of them) and a testing set (10% of them). The former two sets were used for model training, 
and the best-trained model with certain parameters was assumed to be obtained when the error for training set 
kept dropping but that for validation set began to rise. Next, after several sensitivity tests (i.e. varying parameters 
such as the number of hidden layers and neurons, scaling method and batch size, seeking the improvement of 
the results), the optimal LSTM network was obtained. Finally, its performances were evaluated using the testing 
set and further deployed to predict the water levels not only at Oestrich, but also at other gauges along the river. 

B(t-14d) … O(t-14d) … B(t-1d) … O(t-1d) 10-days forecasts from BfG O(t) O(t+1d) … O(t+10d) 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

Figure 5. Formats of the adapted data for the implemented LSTM network in various scenarios 
(B-Basel; O-Oestrich; d-day(s)) 

        The statistical methods used for model evaluation are the root mean square error (RMSE), the coefficient 
of determination (R2) and the percentage of the forecast with the absolute error below 10 cm and 20 cm (i.e. 
PE<10 and PE<20). RMSE and R2 are common approaches to evaluate the accuracy of a dataset. PE<10 and PE<20 
are the skipper-relevant information to evaluate the accuracy of the predictions. The formulae of these four 
approaches are reported in Eq. [8] to Eq. [13]. 

RMSE = √
∑(yexp − ypred)2

N

[8] 

R2 = 1 −
∑ (yexp − ypred)2N−1

i=0

∑ (yexp − yexp̅̅ ̅̅ ̅)2N−1
i=0

[9] 

yexp̅̅ ̅̅ ̅ =
1

N
∑ yexp

N−1

i=0

[10] 

       where, yexp is the expected value, and ypred is the predicted value, and N is the number of the compared 
pairs. 

Absolute error = |yexp − ypred| [11] 

Historical measurements BfG predictions Teaching signals 



E-proceedings of the 38th IAHR World Congress
September 1-6, 2019, Panama City, Panama

1985 

PE<10 =
NAbsolute error<10

N
 × 100% 

[12] 

PE<20 =
NAbsolute error<20

N
 × 100% 

[13] 

       where, NAbsolute error<10 is the number of the forecasts with the error below 10 cm, and NAbsolute error<20 is similarly 
defined.   

5 RESULTS AND DISCUSSION 

5.1 Architecture of the optimal LSTM network 

The gauges Oestrich and Cologne were selected as target gauges in this study. Based on the observed 

and simulated data collected at Oestrich between 2007 and 2016, the network was optimized and its structure 

is listed in Table 1. Due to the direct physical relationship between upstream and downstream in a river system, 

a similar strategy is applicable to forecast water levels at downstream gauges. Therefore, the architecture 

chosen for the better performing network for Oestrich was also adopted for the predictions at Cologne. 

In this study, the input gauges for water level predictions at Oestrich are Basel, Maxau, Rockenau, Frankfurt, 

Oestrich, and those to forecast water levels at Cologne are the input gauges for Oestrich plus two extra gauges 

Kaub and Cologne. The locations of all the input gauges are labelled in Figure 3. For both target gauges, the 

inputs were collected starting from the gauge Basel, which is situated upstream to Maxau (Figure 3). In the 

Rhine River, the waterway from Basel to Maxau is highly controlled by weirs, while the waterway between 

Maxau and Emmerich is free-flowing. Although the flow is highly regulated near Basel, its water levels are still 

directly associated with those at its downstream gauges such as Maxau and Oestrich. With the measurements 

at Basel involved, the network can receive additional forecasting time from the travelling time of water from 

Basel to Oestrich (almost 1 day), which can improve the performance of the network. Furthermore, the inputs 

of the network also introduced the water level forecasts from the BfG hydrological chain, in order to include 

some physical knowledge, e.g. precipitation, temperature etc. (Meißner et al., 2018). 

Table 1. Information regarding the structure of the better performing LSTM network 
Input Previous 2-week water levels collected from input gauges with a frequency of 1 day 

+ 10-day predictions produced from the BfG hydrological chain

Output Daily water level prediction at Oestrich or Cologne (1 day ahead, 2 days ahead, …, 
up to 10 days ahead) 

Time period From December 19th, 2007 to January 10th, 2016 

Dataset distribution Training set (80%), validation set (10%), testing set (10%) 

Structure A visible layer with 2D input tensors (determined by input dataset) + a hidden layer 
with 64 LSTM neurons + an output layer with 10 outputs 

Activation function Hyperbolic tangent activation function (tanh) 

Loss function Mean Square Error (MSE) 

Number of epochs Depending on the condition to cease training 

Batch size 1024 

5.2 Model evaluations 

The accuracy of the developed network was calculated using the results from the testing process, whose 

inputs were water levels approximately between 2015 and 2016, and calculating RMSE, R2, PE<10 and PE<20 as 

statistical parameters. 

The performances of the following three models have been compared: 1) the LSTM network with only daily 

measurements as inputs; 2) the LSTM network with the historical measurements and the simulations from the 

BfG hydrological model chain as inputs (indicated as ‘the LSTM network with the integrated inputs’); 3) the BfG 

hydrological model chain. 

        Considering the long-term water level predictions (up to 10 days) at Oestrich, the LSTM network with the 
integrated inputs delivered better results, mainly reflected in two aspects. Firstly, it outperforms in regards to 
the overall accuracy (i.e. RMSE and R2) of its forecasts with a leading time from 2 to 10 days. Taking the 10-
days in advance forecast as an example (Figure 6), R2 from the combined model is 77.4%, above 10% higher 
than for the hydrological model chain (R2 = 63.5%) and more than 15% higher than that from the LSTM network 
having only the daily measurements as inputs (R2 = 51.7%). Secondly, the distribution of the forecasting errors 
(i.e. PE<10 and PE<20) from the 2nd to the 7th day is lower compared with ones of the hydrological model chain. In 
other words, considering e.g. PE<10 (Figure 7), the LSTM network with the integrated inputs has the ability to 



E-proceedings of the 38th IAHR World Congress
September 1-6, 2019, Panama City, Panama

1986 

produce a higher number of predictions with a difference smaller than 10 cm between measurements and 
precipitations. 

Figure 6. Coefficient of determination R2 comparing the different models (Target: Oestrich) 

.
Figure 7. Percentage of the absolute error PE<10 comparing the different models (Target: Oestrich) 

       The structure of the better performing LSTM network with the integrated inputs designed for Oestrich also 
yielded good results for the water level forecasts at Cologne (e.g. the comparison of R2 of the different models 
shown in Figure 8). This demonstrates that the developed model has the capability to deliver reliable predictions 
at any gauges along the Rhine River with a properly prepared input dataset, which is an advantage of this multi-
outputs model. Nevertheless, the performance of the model in Cologne showed a lower accuracy. With regard 
to R2, the accuracy for both 1-day ahead and 2-days ahead predictions at Cologne are lower than the ones of 
the hydrological model chain. This occurs because the LSTM architecture was optimized for the target Oestrich; 
therefore, a lower accuracy will be encountered when predicting water levels for another gauges along the 
Rhine, compared to the one in Oestrich (Figure 6). 
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Figure 8. Coefficient of determination R2 comparing the different models (Target: Cologne) 

5.3 DSA field test 
       The DSA field test started in July 2018 and ended in December 2018. The project partner BearingPoint 
developed a demonstrator and made available to the skippers for 6-months testing, feedbacks and 
improvements. During this period, numerous tests have been conducted in parallel testing the LSTM network 
with the integrated inputs, in order to prove its performance on real-time water level predictions, evaluating their 
differences from the water level measurements. Due to the 2018 European heat wave, Summer 2018 was very 
dry and characterized by extreme temperatures for Germany, as well as a significant lack of rainfall, leading to 
the lowest historical water level in the gauge Kaub (downstream to Oestrich, Figure 3) and Cologne in the month 
of October. Despite the exceptional dataset compared to the past values, the LSTM network with the integrated 
inputs produced promising results during the DSA field test, where the better predictions incurred at the 
beginning of summer and the worse ones were in October. E.g. considering the forecasting period from 12th to 
21st July 2018 (reported in Table 2), the absolute differences between the predictions and the measurements at 
Oestrich and Cologne were within 22 cm. Clearly, the hydrological model chain of the BfG delivered better 
results, because continuously updated and linked with the newest information (e.g. weather). The LSTM model 
with the integrated inputs can be further improved by e.g. including Summer 2018 in its training set. 

Table 2. Evaluation of the DSA field test from 12th to 21st July 2018 
Target: Oestrich 

All values in [cm] 12 July 13 July 14 July 15 July 16 July 17 July 18 July 19 July 20 July 21 July 

Measurements 140 133 125 116 116 119 116 117 117 114 

LSTM+BfG model 141 137 132 129 123 122 121 122 125 129 

Meas. – LSTM+BfG -1 -4 -7 -13 -7 -3 -5 -5 -8 -15

BfG model 133 124 120 118 115 113 111 110 108 106 

Meas. - BfG 7 9 5 -2 1 7 6 7 9 8 

Target: Cologne 

All values in [cm] 12 July 13 July 14 July 15 July 16 July 17 July 18 July 19 July 20 July 21 July 

Measurements 200 188 183 168 160 158 159 155 157 153 

LSTM+BfG model 196 192 184 178 172 169 165 166 169 175 

Meas. – LSTM+BfG 4 -4 -1 -10 -12 -11 -6 -11 -12 -22

BfG model 193 183 170 163 159 155 153 151 148 99 

Meas. - BfG 7 5 13 5 1 3 6 4 9 22 

6 CONCLUSION AND OUTLOOK 
       The current German waterways require an improvement concerning inland navigation logistics and 
management, in order to mitigate the significant increase in traffic expected by the year 2030 (BMVI, 2016). In 
this context, contributing to the BMVI-funded project Digital Skipper Assistant (DSA), this study had the 
motivation to explore the competence of ANNs in forecasting water levels up to 10-days ahead at some strategic 
gauges among the German section of the Rhine River. The basic idea is the determination of a target gauge 
based on its previous information (in time) and on some relevant upstream gauges, mainly focusing on water 
levels. A multi-outputs LSTM network was developed in this study, demonstrating the promising performance 
of LSTM networks in identifying long-term dependencies. The hydrological data and predictions were provided 
by the Federal Institute of Hydrology in Germany (BfG), also DSA project partner.  
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       In this study, the focus was on two important gauges along the Rhine River Basin: Oestrich and Cologne. 
The better performing LSTM architecture was established for Oestrich and then applied to Cologne as well, 
considering the direct physical relationship between upstream and downstream in a river system. The results 
showed an impressive improvement, when not only the water level measurements were used as inputs, but 
also the predictions of the BfG. As the network was optimized to produce the best results at Oestrich, its outputs 
were better performing than the ones of Cologne. Nevertheless, the developed model still delivered reliable 
forecasts at Cologne, having the highest R2 for the water level predictions with a leading time from 3 to 10 days. 
In addition, several tests were conducted on real-time forecasts during the DSA field test from July to December 
2018. Influenced by the extremely dry and hot weather conditions in Europe, the water levels in Summer 2018 
were significantly different compared to the historical ones used for the model training. However, the LSTM 
network with the integrated inputs gave promising results; although, a certain improvement would occur when 
including Summer 2018 in the training set of the model.  
       To conclude, this work shows that the implemented LSTM network integrating as additional inputs the 
forecasts of the BfG hydrological model is able to predict water levels not only at Oestrich, but also at other 
gauges along the Rhine River system. Furthermore, the developed network is also applicable for real-time 
predictions. In further research, the accuracy of the network can still be increased, e.g. by updating the training 
set or including further information as inputs, such as precipitation data. 
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