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Mr. President,  
Dear colleagues,  
Ladies and gentlemen,  
 
I am very honoured, and deeply grateful to the IAHR Awards Committee and the IAHR Council for making me 
the recipient of this year’s Arthur Thomas Ippen Award. 

It is a great pleasure for me to be here today to deliver this lecture. It has also been a great pleasure to 
attend this Congress, which was used as a special occasion to celebrate the 70th anniversary of IAHR – an 
association that is truly unique and exceptional in the many ways in which it supports us in our efforts to 
advance the state-of-the-art in research, teaching and practical application in all fields of hydraulics. Before 
turning to the topic of my lecture, I would like to wish IAHR, on its 70th anniversary, a long life! And may we 
continue to celebrate its anniversaries in the same spirit that animated us throughout this Congress. 

 
 

1.  Introduction 
 

As is well known, meandering has attracted the attention of scientists  and  engineers  since a  long  
time. However, a systematic research on meandering appears to have been initiated towards the end of 
the 19th century (with, among others, the works of J. Thomson (see e.g. Ref. [45], from 1879), N. de 
Leliavsky (see e.g. Ref. [10], from 1894), M. Jefferson 1902, L. Fargue (see e.g. Ref. [14], from 
1908), H. Engels 1926, etc.). Since then, a voluminous literature has been produced on various 
aspects of meandering streams (mechanics of meandering flows, initiation of meandering, time-
growth of their loops, modelling of meandering streams, their bed topography, etc.), each of these 
aspects forming a separate and still ongoing research topic in its own right. [For reviews of past 
research on various meandering-related topics see e.g. Leliavsky 1959, Chang 1988 and Yalin 1992]. 
In my lecture today, I will focus on the present understanding of some aspects of meandering and 
especially give you our perspective. In particular, an attempt is made to answer the following 
questions: Why do rivers deviate from a straight alignment and start meandering? And how does a 
river evolve with the passage of time once meandering initiated?  

In the first part of this lecture, and following da Silva (1991), Yalin (1992), the initiation of 
meandering and the subsequent time-growth of meander loops are explained in the light of recent 
discoveries in turbulence and the regime trend, respectively. In the second part, recent experimental 
findings regarding the convective behaviour of flow are used to explain characteristic features of the 
time-evolution of meander loops, including the variation with sinuosity of their speed of lateral 
expansion. 
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The above topics were extensively dealt with in the 2001 IAHR Monograph “Fluvial Processes” 
(Yalin and da Silva 2001). This lecture is used as an opportunity to further elaborate parts of the 
aforementioned monograph, as well as present additional information resulting from the author’s 
recent research.  
 
 
2.  Geometric Characteristics of Meandering Streams 
 
Before proceeding further, the following pertinent aspects of the geometry of meandering streams – 
invoked throughout this lecture – should be mentioned. 
 
2.1  Meander wavelength  
i)  Several authors, and most prominently Inglis (1947), Leopold and Wolman (1957), and Zeller 
(1967), realized long ago that the meander wavelength MΛ  (see the definition sketch in Fig. 1) is 
related to the flow width B by a simple proportionality, i.e. that nBM =Λ . Fig. 2, which is the 
extended version of Fig. 13.12 in Ref. [17], shows the plot of the meander wavelength data from 
various sources versus flow width. This Figure indicates that 6≈n , and thus that the (average) 
meander wavelength MΛ  can best be given by 

  BM 6≈Λ .                         (1) 

 
ii)  Observe that Fig. 2 contains data not only from alluvial streams, but also from meltwater channels 
on ice and meanders on the Gulf Stream. These data are from Leopold et al. (1964), who appear to 
have been the first to realize that “the meander pattern of meltwater channels on the surface of 
glaciers have nearly identical geometry to the meander bends in rivers” and that “the geometry in plan 
view of meanders in the Gulf Stream is also similar to that of rivers”. It should be noted that, as 
pointed out by Leopold et al. (1964), p. 302, the “meandering channels on ice are formed without any 
sediment load or point-bar construction by sediment deposition” and that the meanders on the Gulf 
Stream too occur “… without debris load and, in this instance, without confining banks”. Considering 
this, Yalin (1992), p. 161, defined meandering as a “self-induced plan deformation of a stream that is 
(ideally) periodic and anti-symmetrical with respect to an axis, x say, which may or may not be 
exactly straight”. The term self-induced is used to imply that the deformation is induced by the stream 
itself, as opposed to being “forced” upon the stream by its environment. 
 
iii) From a very large number of field and laboratory measurements carried out mostly by Japanese 
researchers (see e.g. Hayashi 1971, JSCE 1973), it follows that the average length a  of alternate 
bars (see Fig. 6(b) later on, showing a plan view of alternate bars and definition of 

Λ
aΛ ) is 

approximately equal to six times the flow width. Note the striking similatity between MΛ  and aΛ : 
 
 .             (2) BaM 6≈Λ≡Λ
  
 
2.2  Plan shape of a meandering stream; Sine-generated curve 

It appears to be generally accepted nowadays that the centreline (in plan view) of a natural 
regular meandering stream is best idealized by the sine-generated curve (due to Leopold and Langbein 
1966, Langbein and Leopold 1966).  As is well known, this periodic (along the general flow    
direction x ) curve is determined by the following equation 
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⎜
⎝
⎛=

L
lcπθθ 2cos0 ,                        (3) 

 
(see List of Symbols and Fig. 1 for the meaning of symbols in this equation). 

From Eq. (3) it should be clear that a fundamental property of sine-generated channels is that 
they exhibit a continuous variation of the centreline curvature  )R/1 /( cdldθ−=  along the 
streamwise direction : at crossovers , where cl iO 0=cl , , , …, etc., then ;  at apexes 

, where , , , … etc., then  is maximum.  
2/L L 0|/1| =R

ia 4/Llc = 4/3L 4/5L |/1| R
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1  Definition sketch      Figure 2  Plot of meander wavelength versus flow width 
                                                                                                 (after Garde and Raju 1977) 
 

The sinuosity ML Λ=σ /  and the dimensionless curvature at the apex  of sine-generated 
channels are uniquely determined by 0

aRB /
θ  as )(/1 00 θ=σ J  and )(/ 000 θθ JRB a = , where )( 00 θJ  is 

the Bessel function of first order and zero-th kind of 0θ  (Yalin 1992). The first of these relations 
implies that the different sine-generated plan shapes are due to the different values of the deflection 
angle 0θ  only. The graphs of σ/1  and a  are shown in Fig. 3(a). Observe that the largest values 
of (dimensionless) curvature at the apex occur for intermediate values of 0

RB /
θ  ( ), and that 

a  then gradually decreases with the increment of deviation of 
o700 ≈θ

RB / 0θ  from . The  maximum  
possible value of 0

o70≈
θ  is . This corresponds to rad41.2138 =≈ o 0)( 00 =θJ  and ∞→σ,L . However, 

in practice, this can never occur, for when 0θ  reaches the value  rad20.2126 =≈ o )5.8( ≈σ , the 
meander loops come into contact with each other and the meandering pattern is destroyed (Fig. 3(b)). 

 
 

3.  Large-scale Turbulence and the Initiation of Meandering 
 
The reason for why rivers meander has been a subject of intensive debate in the literature, with many 
ideas and suggestions emerging over the past 100 years (Coriolis force, bank erosion due to local 
disturbances, theory of most probable path, unstable response of the banks to a small-amplitude 
perturbation, alternate bars, etc.). According to  Yang (1971),  most  theories “emphasize some special 
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Figure 3  Geometric characteristics of sine-generated meandering streams. (a) Plot of 
σ/1  and  versus aRB / 0θ ; (b) Maximum possible value of 0θ  

 
phenomena observed in meandering channels and neglect the physical reasoning which creates them”. 
From the debates of these theories, eventually the idea settled that if an explanation for why 
meandering initiates is to be generally accepted, it should not fail to explain: 1- why the wavelength 
of meanders should be BM 6≈Λ , and 2- why meanders occur even when there is no sediment 
transport (see Section 2). The view that meandering is caused by the large-scale turbulence, expressed 
by many prominent researchers dealing with fluvial processes (Leopold 1957, Velikanov 1958, Karcz 
1971, Yalin 1977, Grishnanin 1979, etc.), appears to stem from the realization of these two facts. 
However, this view could not be satisfactorily demonstrated until the relatively recent discovery of 
bursting processes. In this Section, bursting processes are described in a schematical manner – all 
possible deviations and distortions due to the strong “random element” ever-present in any turbulent 
flow are disregarded in this description. An outline of the initiation of meandering by bursts is given 
in Section 4.  
 
3.1 Coherent structures and bursts 
Following Hussain (1983), the term “coherent structure” (CS) is used here to designate the largest 
conglomeration of turbulent eddies which has a prevailing sense of rotation, the term burst, to 
designate the evolution of a CS during its life-span T . The bursts can be vertical (V) or horizontal 
(H). The CS’s of the former rotate in the -planes, those of the latter, in the -planes (Fig. 4). );( zx );( yx
   
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4  Vertical and horizontal planes of rotation of CS’s 
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It is not yet known how exactly the aforementioned CS’s originate and develop and the following is a 
brief “synthesis” of the  contents  of  Blackwelder (1978),  Grishanin (1979),  Cantwell (1981), 
Hussain (1983), Gad-el-Hak and Hussain (1986), Rashidi and Banerjee (1988), and several others. 
 
i) A vertical burst-forming CS originates at a location around a point P (at ; see Fig. 5(a)) near the 
flow boundary. At , a future macroturbulent eddy  (“transverse vortex”) rolls-up at P (which 
is assumed to be at ), and it is ejected, together with the fluid under it, away from the bed. This 
total fluid mass moves towards the free surface, as it is conveyed by the flow downstream (ejection 
phase). In the process, the moving fluid mass continually enlarges (by engulfment) and new eddies 

, , …, are generated (by induction) – thus a continually growing CS comes into being. When 
this structure becomes as large as to touch the free surface, it disintegrates (break-up phase) into a 
multitude of smaller and then even smaller eddies … until their size becomes as small as the lower 
limit 

iO
0=t Ve
0=x

Ve′ Ve ′′

∗v/ν , where their energy is dissipated (as implied by the “Eddy-Cascade Theory”). The 
neutralized fluid mass moves then downstream – towards the bed (sweep stage), with a substantially 
smaller velocity than that of ejection. At VTt = , the fluid arrives at Vx λ= , which prompts the 
initiation of the “new” cycle at the next downstream point P (Hussain 1983, Nezu and Nakagawa 
1993, etc.). The above described cycle is referred to as burst-cycle, or simply, as burst. 

The conceptual Fig. 5(a) shows (in a stationary frame) a V-burst cycle of an open-channel flow; 
the cine-record in Fig. 5(b) shows (in a convective frame) an instantaneous view of two consecutive 
CS’s.  
 
ii)  The analogous is valid, mutatis mutandi, for an H-burst. The difference appears to be in the length 
scale: all “lengths” of the large-scale vertical turbulence are proportional to the flow depth h; those of 
the large-scale horizontal turbulence, to the flow width B. The burst-forming HCS’s extend (along ) z
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 5  (a) Conceptual representation of a V-burst cycle (after Rashidi and Banerjee 1988);  
(b) Cine-record showing an instantaneous view of two consecutive CS’s (from Klaven 1966) 

 5



throughout the flow thickness , and they can thus be likened to thin horizontal “disks” (Yokosi 
1967). 

h

The HCS’s originate at the points  near the banks (see Fig. 6(a)) and the free surface, where 
horizontal shear stresses 

iO
xyτ  are the largest. Afterwards, they are conveyed by the mean flow 

downstream, while growing in size. Provided that the width-to-depth ratio is not too “large” (see 
Section 4, paragraph (iii)), then the HCS’s will grow until their lateral extent becomes as large as B. 
At this point, they interact with the opposite bank and disintegrate. The neutralized fluid mass returns 
to its original bank so as to arrive there at HTt = . It is likely that if the bursts are “fired” from the 
points , , … at the times , 1, 2, …, say, then at the points 1O 2O 0=t 1O′ , , … they are “fired” at 

, , … (see da Silva 1991). 
2O′

2/1=t 2/3
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 6  (a) Plan view of sequences of HCS’s;  (b) Plan view of alternate bars 

 
 
iii) If  and  are the “birth-places” of two consecutive bursts of a burst-sequence (Figs. 5(a) 
and 6(a)), then the distance 

iO 1+iO
ViiOO λ=+1  or Hλ  is the burst-length, the life-span of a burst being 

avVV uT /λ=  or avHH uT /λ=  (for CS’s are transported by the flow with the velocity avu≈ ). Let 
 be the origin of the first burst of a burst-sequence. If  is fixed (e.g. if  is the location of the 

“local discontinuity” 
0O 0O 0O

δ  in the sense of Yalin 1992), then the rest of ’s must also be considered as 
fixed, for each of them is distant from  by an integer number of the constant lengths 

iO
0O Vλ  and Hλ . 

But this means that the straight time-average initial flow is subjected to a perpetual action of bursts 
“fired” from the (ideally speaking) same location . This action must inevitably render the flow to 
acquire a sequence of periodic (along 

iO
x  and t ) non-uniformities, which, in turn, must cause, by virtue 

of the sediment transport continuity equation, the emergence of the periodic (along x ) bed- and/or 
bank-forms . These initial forms must grow with the passage of time (by coalescence) until they 
acquire their developed length  that is the same as the burst length: 

)( j
jΛ

 

 HVj λλ or    =Λ .                                                                                                                     (4) 

 

iv) The burst lengths Vλ  and Hλ  are found to be independent of the inner variables ν/skv∗  and 
: they scale, respectively, with the outer variables h  and hks / B  (see e.g. Nezu and Nakagawa 1993, 

Gad-el-Hak and Hussain 1986, Cantwell 1981). Indeed, as can be noted e.g. from Figs. 2.4(a) and (b) 
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in Yalin and da Silva (2001), the data-points of hV /λ  cluster at the level , irrespective of what 
the value of 

6≈
ν/Re huav=  ))/)(/(( νss kvkhc ∗=  might be. Thus  

 6≈
h
Vλ .                                          (5) 

 
Similarly, the oscillograms recorded by Yokosi (1967) in Uji River, Japan, and those obtained by 
Dementiev (1962) in Syr-Darya River, former U.S.S.R. (and reproduced in Figs. 3.15 and 3.16 in da 
Silva 1991 and Figs. 2.18 to 2.20 in Yalin 1992) indicate that the dimensionless Hλ , viz BH /λ , can 
also be expressed as  
 

 6≈
B
Hλ .                                                          (6) 

 
However, as will be presently clarified, the relation (6) is valid only if the aspect ratio  of the 
flow does not exceed a certain upper limit. 

)/( hB

 
 
4.  On the Initiation of Meandering by the Large-Scale Horizontal Turbulence 
 
In the following, we will focus exclusively on horizontal bursts and their consequences. (Those 
interested in the effect of vertical bursts on the movable bed, namely the emergence of bed forms of 
the length  (that is, dunes), are referred to Yalin 1992). hd 6≈Λ
 
i) From the content of the previous section, it follows that  
 

BMaH 6≈Λ≡Λ≡λ .                                                         (7) 
 
The remarkable coincidence between the (average) horizontal burst length Hλ , the (average) alternate 
bar length , and the (average) meander wavelength aΛ MΛ  implied by (7) suggests that both 
alternate bars and meanders initiate because of the same mechanism, namely horizontal bursts. 
Alternate bars are due to the action of horizontal bursts on the deformeable surface of the movable 
bed, the initiation of meandering being due to the action of horizontal bursts on the deformeable 
banks. In the following, the conditions under which horizontal bursts may lead to meandering and/or 
to alternate bars are discussed. 
 
ii)  Consider a straight and prismatic open-channel, having a rectangular cross-section )( 00 hB × . The 
granular bed is flat and its roughness is . The steady and uniform flow, which commences at sk 0=t , 
is rough turbulent. The turbulence structure of this flow can be affected only by the channel geometry 
and its roughness. i.e. this structure is completely determined by the parameters ,  and   
and thus by the dimensionless variables  and  (or, equivalently, ). Hence it would be 
only appropriate to locate the existence regions of various types of alluvial forms (bed and plan 
forms) due to horizontal macroturbulence, and in particular alternate bars and meanders, on the 

-plan. Accordingly, the - and -values of all the available field and laboratory 
data are plotted in Fig. 7 (The References to the data in this Figure are given in Yalin and da Silva 
2001, at the end of Chapter 4). Observe from this graph that the upper boundary of the existence 

B h sk )~( D
hB / skh / Dh /

)/;/( DhhB hB / Dh /
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region of alternate bars, namely the line L , can be taken (approximately) as the upper boundary of the 
existence region of meanders. However, the lower boundaries of the existence regions of alternate 
bars and meanders are different. The lower boundary of the alternate bar region is the line AL ; the 
lower boundary of the meandering region is the line ML .  
 
iii)  From the aforementioned it follows that: 
 
1. If  is small (smaller than the ordinates of the line hB / AL ), then the horizontal burst-forming 

coherent structures grow until their lateral extent becomes as large as B  without rubbing the bed 
(like in Fig. 8(b)), and therefore they cannot produce “their” bed forms, viz alternate bars. Yet, the 
sequence of these structures can still initiate meandering by their direct impact on the banks, 
and/or by the convective action of the internal meandering they generate. Thus the horizontal 
bursts can “imprint” on the channels banks the length 06BH ≈λ , without alternate bars. This 
occurs in the zone between the lines AL  and ML . Fig. 9(a) shows how the sequence of horizontal 
bursts of an initial channel causes the flow and the alluvial banks to deform (in plan view) in a 
wave-like manner.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7  -plan defining the existence regions of alluvial forms )/;/( DhhB
due to horizontal macroturbulence 
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Figure 8  Evolution of a HCS. (a) Plan view; (b) and (c) Longitudinal views, corresponding to the  
cases where the HCS is not rubbing the bed and is rubbing the bed, respectively 

 
2. If  is larger than the ordinates of hB / AL , but smaller than those of L , then the horizontal 

coherent structures are rubbing the bed (like in Fig. 8(c)), and they produce first the alternate bars 
(as shown in Fig. 6). These act as “guide-vanes”, facilitating (accelerating) the bank deformation 
which would have occurred anyway due to direct impact of HCS’s on the banks. In this case, the 
points A and M can be present in the same zone (viz between the lines L  and AL ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 9  Initiation and subsequent development of meanders 
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[If  is larger than the ordinates of L , then the horizontal bursts emitted from one bank will not be 
able to grow as to reach the opposite bank, for they will be destroyed before that by friction. In this 
case, the horizontal coherent structures issued from both banks may meet each other in the midst of 
the stream, or even not be able to meet at all. Thus instead of the one-row burst configuration and 
one-row bars (alternate bars) like in Fig. 6, we will have 2-row burst configuration and 2-row bars, or 
3-row burst configuration and 3-row bars, etc. The formation of n-row bars (multiple bars) by n-row 
burst configurations and its relation to braiding is discussed elsewhere (Yalin 1992, Yalin and da 
Silva 2001).] 

hB /

 
 
5.  Regime Develoment and Time-Growth of Meander Loops 
 
i) Regime (or stable) channels and meandering have usually been regarded and treated as independent 
fluvial phenomena. We owe the first suggestions that the phenomena mentioned may not really be 
independent to Bettess and White (1983) and Chang (1988). An outline of the time-growth of 
meander loops in the light of the regime-trend following da Silva (1991), Yalin (1992) and Yalin and 
da Silva (2001) is given below.  
 
ii) Consider an experiment which starts at 0=t  in a straight initial channel excavated in an alluvial 
valley. The slope  of the initial channel is the same as the valley slope , i.e. 0S vS vSS =0 . It is 
assumed that the granular material and fluid are specified, that the flow rate Q is given 
( ,  being the bankfull flow rate), and that the conditions are such that sediment 
can be transported. It is also assumed that the initial channel  is such that the formation of 
the regime channel  is possible. The duration of formation of the regime channel is .  

constQQ bf == bfQ
),,( 000 ShB

),,( RRR ShB RT
The laboratory research (see e.g. Ackers 1964, Leopold and Wolman 1957) indicates that the 

variation of the flow width B, the flow depth h, and the slope S during  takes place as shown in the 
schematic Fig. 10. In the (very short) part  of , B and h vary substantially, while S remains 
nearly constant ; no regime development as such takes place. The part  of  is merely 
the duration needed to alter (the arbitrary)  and  into such  

RT
0̂T RT

)( 0SS ≈ 0̂T RT
0B 0h 0B̂ )( RB≈  and , say, which are in 

equilibrium with the existing  and which together with  are able to convey the given flow 
rate Q . The regime development in the proper sense takes place only after the adjustment period . 
(The time  in the previous section is to be identified with the present ). 

0ĥ
0SS ≈ 0S

0̂T
0=t 0̂Tt =

  
 
 
 
                                                                              
 

 
 
 
 
 
 
 
 

Figure 10  Schematical representation of regime development with time of 
flow width B, flow depth h, and slope S 
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 According to the contemporary rational approaches to regime, the regime development is a 
process in which the stream appropriately alters its channel so that a certain energy-related quantity, 

 say, may be minimized. Although different authors proposed different quantities as ∗A ∗A  (e.g. 
according to Chang 1988, QSA γ=∗ ; according to Yang et al. 1981, ; according to Jia 
1990 and Yalin 1992, 

SuA av=∗
FrA =∗ , where ; according to Yalin and da Silva 2001, SFr ~ avuA =∗ ), 

almost invariably  is such that its minimization can only be achieved through the decrement of the 
slope. This is in agreement with the aforementioned experimental observations. 

∗A

 Clearly, the decrement of the slope (from  to ) can only be achieved either by degradation-
aggradation, or by meandering (for the expansion of meander loops (see Fig. 9(b)), i.e. the increment 
of their length, means the decrement of the channel slope) – or by a combination of both. The 
development stops, and thus the expansion of meander loops stops, at 

0S RS

RTt =  when . In the 
case of large sand-bed rivers, the regime development is accomplished primarily by meandering. For 
the regime slope of large sand-bed rivers is usually rather small and, as pointed out by Chang (1988), 
“reduction of channel slope through incision would require tremendous degradation. For these 
reasons, the river channel usually adjusts by developing a flatter slope through meandering” (p. 313). 

RSS =

 
 
6.  Convective Flow and Deformation of Bed and Banks 
 
As is well known, at the same time that meander loops expand, they also migrate downstream. (Since 
loops expand by maintaining the distance between consecutive crossovers , , , … (see     
Fig. 9(b)), downstream migration was disregarded in the previous section so as not to encumber the 
explanations). The evolution in plan of meander loops through (simultaneous) downstream migration 
and loop expansion is illustrated in Fig. 11, where the results of one of the laboratory runs by Friedkin 
(1945) are shown. 

1O 2O 3O

 
 
 
 
 
 
 
 
 
 
 

 
Figure 11  Evolution of a meandering stream through downstream migration and  

lateral expansion (from Friedkin 1945) 
 

  
 From field measurements in European and American rivers, but especially from series of river 
surveys carried out over long periods of time in Russian rivers including the Dnieper, Oka, Irtish, etc. 
(compiled and analysed by Kondratiev et al. 1982), it follows that the (normalized) migration velocity 
and the expansion speed of freely meandering rivers varies with 0θ  as shown schematically in       
Fig. 12. “At the early stages (small 0θ ), it is the downstream migration of the meander waves which 
is mainly observable, at the latter stages (large 0θ ), it is their expansion which dominates” 
(Kondratiev et al., p. 108).  

 11



 
 
 
 
 
 
 
 
 

 
 

Figure 12  Schematical plot of (normalized) migration and expansion velocity  
of meander loops versus 0θ   

 
 

In the following, the patterns of migration and expansion described above are explained on the 
basis of the convective behaviour of the flow. It will be assumed that the plan shape of the stream is 
sine-generated, that its width-to-depth ratio  is “large” ( , say), and that the flow is 
turbulent and sub-critical. The assumption that  is “large” gives the possibility to replace the 
consideration of an actual 3D-stream by that of its vertically-averaged 2D counterpart (as has been 
successfully done already by several authors (see Kalkwijk and De Vriend 1980, Smith and McLean 
1984, Nelson and Smith 1989, Struiksma and Crosato 1989, Shimizu 1991, etc.)). This assumption 
also conveys that the role of the cross-circulation 

hB / 20>≈
hB /

)(Γ  is negligible with regard to the present 
considerations. Indeed the relation 
 

  
BL

lJc
u
v avhc

av ⋅⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ′Γ πθθα 2sin)]([ 000

2
2

                                                                  (8) 

 
(derived in Yalin & da Silva 2001, pp. 136 to 140) indicates that 0/ →′Γ uv  when ∞→avhB / , and 
thus that  Γ )(~ Γ′v  can be ignored when  is “large”. The irrelevance of  with regard to the 
formation of  wide  natural  streams  has  been  independently pointed out in the past by many 
eminent field-research engineers (such as Leliavsky 1959, Matthes 1941, Kondratiev et al. 1982, 
Velikanov 1955 and Makaveyev 1975). [More on the topic in Chapter 5 of Yalin & da Silva 2001; see 
also Hooke 1974]. 

avhB / Γ

 
i) Consider the flow in a wide meandering (sine-generated) channel at the beginning of experiment (at 
the time ): the channel bed is flat (it is the graded surface of a mobile bed). From experiment and 
numerical simulations, it is known that the vertically-averaged streamlines 

0=t
s  of this (initial) flow are 

not parallel: in some parts of the flow-plan they converge, in some others they diverge from each 
other (Fig. 13). At any given flow cross-section, if the -flow on one side of  is accelerating 
(and the vertically-averaged streamlines 

2/Q ∗s
s  are converging to each other), then the -flow on the 

other side of  is decelerating (and the vertically-averaged streamlines 
2/Q

∗s s  are diverging from each 
other). As a consequence the streamlines s  form, in the flow plan, adjacent to each other convergence 
and divergence flow zones as shown schematically in Fig. 13. In the case of a sine-generated stream, 
the convergence-divergence zones have the length  and periodically alternate along . 2/L c
 In the following, the deviation angle between the vertically-averaged streamlines and the 
longitudinal coordinate lines will be termed 

l

ω . 
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Figure 13  Convergence-divergence zones of meandering flows 
 

ii)  Since the local sediment transport rate s  is an increasing function of the (local) vertically-
averaged flow velocity 

q
U , the convective variation of U  in a flow zone must inevitably cause the 

corresponding convective  variation  of  s  in that zone; i.e. it must cause the scalar s  to acquire a 
non-zero value. But  must, in turn, induce the displacement of the bed surface in vertical 
direction  - as required by the sediment transport continuity equation 

q q∇
0≠∇ sq

)(z
 

 s
b
t

z
pW q−∇=

∂
∂

−= )1( ,                                                                   (9) 
 
where  is the vertical displacement velocity of the bed surface. This equation indicates that if 

, then  (erosion), and if 
W
0>∇ sq 0<W 0<∇ sq , then  (deposition). Only in the locations 

where the flow is parallel, and thus 
0>W

0=∇ sq , the elevation  of the bed surface can remain 
unchanged   

bz
).0( =W

It follows that the zones of the downward and upward bed displacements (i.e. the erosion and 
deposition zones) must necessarily coincide with the zones of convective acceleration and 
deceleration of flow, respectively.  
 
iii) The deformed bed of a meandering stream consists of a longitudinal sequence of laterally adjacent 
“deeps” and “hills”. Each (deep) + (hill) complex can be viewed as one erosion-deposition zone (in 
short [ED]). From the preceding section it should be clear that each [ED] is brought into being by a 
(corresponding) convergence-divergence zone (in short, by [CD]) of the initial flow. Hence the length 
of each [ED] must be the same as that of each [CD], viz .  2/L

From laboratory measurements of sine-generated meandering flows having a flat bed and 
“small” and “large” values of 0θ  (see Whiting and Dietrich 1993, da Silva 1995, Termini 1996), it 
follows that: 

 
1. If 0θ  is “small” (Fig. 14(a)), then a [CD] exhibiting (throughout its length) 0>ω , extends 

between the apex-sections  and 1  (where the value of ia +ia ω  is zero), the most intense 
convergence/divergence ( maxω ) being at the crossover-section ; 1+iO

 
2. If 0θ  is “large” (Fig. 14(b)), then the analogous [CD] exhibiting 0>ω  extends 

approximately between the crossover-sections iO  and  (where 1+iO 0=ω ), the most intense 
convergence/divergence ( maxω ) being at the apex-section . ia
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Figure 14  Flow convergence-divergence zones (a and b), bed erosion-deposition zones (c and d) and 
patterns of bank shifting (e and f) in streams having “small” and “large” 0θ . (a), (b), (e) and (f) Schematical 

representations; (c) and (d) Measured by Losiyevskii (and reported by Kondratiev et al. 1982)  
and Jackson 1975, respectively 

   
 
Hence the deepest erosions and highest depositions must be expected to occur around the 

crossovers  if iO 0θ  is “small”, and around the apex-sections  if ia 0θ  is “large”. The examples of 
actual streams shown in Figs. 14(c) and (d) appear to confirm that this is indeed so. Clearly, the banks 
must be eroded mostly in those locations where the bed adjacent to them is eroded; and similar 
reasoning applies to deposition. Therefore one must expect mainly migration for “small” 0θ , and 
mainly expansion for “large” 0θ , as illustrated in Figs. 14(e) and (f). 

 
iv) The considerations in this section give rise to the following expectations: 
  

1. All other conditions remaining the same, the location in plan of the [CD]’s should vary with 
0θ  as shown in the schematic Fig. 15 (where the meandering channels are “straightened” for 

the sake of simplicity and “CONV” and “DIV” indicate the regions of flow convergence and 
divergence, respectively). Note that the shaded [CD] – having 0>ω  – is centered around the 
crossover-section 1 for “small” +iO 0θ . Then its location gradually shifts upstream as 0θ  
increases (as implied by the arrow), so that for “large” 0θ  it becomes centered around ; ia

 
2. Consequently, the location of [ED]’s should vary with 0θ  as shown also in Fig. 15. The [ED], 

just like the [CD] which brought it into being, is centered around the crossover-section 1 
for “small” 

+iO
0θ . Then its location gradually shifts upstream as 0θ  increases (as implied by the 

arrow), so that for “large” 0θ  it becomes centered around . ia
 
[In Fig. 15, 0cξ  is the normalized (by L) distance from the crossover  to the upstream end of the 
[CD] shown, while 

iO
λ  is the normalized (by L) distance from the apex ia  to the mid-section of the 

erosion-deposition zone brought into being by the aforementioned [CD]. Both 0cξ  and λ  are 
measured along the channel centreline]. 
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Figure 15  Variation with 0θ  of location of convergence-divergence flow zones and  
erosion-deposition zones                   

 
It should be clear that if the location in flow plan of [ED]’s is to vary with 0θ  as shown in       

Fig. 15, then this must necessarily  lead  to  a  combination  of  migration  and expansion for “interme- 
diate” values of 0θ , with migration dominating when 0θ  is “small” and expansion dominating when 

0θ  is “large” – which is in agreement with the migration/expansion patterns implied by Fig. 12. 
A series of measurements carried out by da Silva et al. (In Press) in laboratory sine-generated 

channels having , , , , and  (o300 =θ o50 o70 o90 o110 m 40.0=B ; cmh 3≈ ) and a flat sand bed 
( m ) seems to validate expectation 1. Indeed, consider the plot of the measured values of m2.250 =D

0cξ  versus 0θ  in Fig. 16, and observe how the measured 0cξ  gradually decreases from 0.25 to 0 as 
0θ  increases from  to .  o0 o138

A recent analysis presented in da Silva and El-Tahawy (In Press) of all the available bed 
topography data from laboratory experiments in sine-generated channels, including that from a series 
of tests carried out by El-Tahawy (2004), appears to validate expectation 2.  

The maximum value max)( cω  of the deviation angles measured along the channel centreline of 
each of the aforementioned five channels is plotted versus 0θ  in Fig. 17. Note that the max)( cω -
curve (the solid line passing through the measured values of max)( cω ) first increases as 0θ  increases, 
reaches its maximum, and then decreases.  Clearly,  as  the  deviation  of  0θ   from    decreases, o70≈
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Figure 16  Plot of measured values of  0cξ               Figure 17  Plot of measured values of max)( cω  
versus 0θ  ( Eq. numbers are those in da Silva              versus 0θ  (Eq. numbers are those in da Silva 
et al. (In Press))  et al. (In Press)) 
 
 

aRB )/(  increases (see Fig. 3(a)). But this means that the flow becomes “stronger” (in the sense that 
superelevation increases, velocity gradients increase, the amplitude of oscillation of  around the 
channel centreline increases, etc.). Therefore 

∗s
max)( cω  must necessarily increase – which explains 

why in Fig. 17 max)( cω  reaches its maximum for rad.   22.1700 =≈ oθ
I would like to end my lecture by pointing out that the maximum lateral expansion velocity  

occurs for values of 0θ  that are comparable with those for which max)( cω  is the largest (see Figs. 12 
and 17). Clearly, the stronger the “intensity” of  convergence-divergence of flow (i.e. the larger the 
value of max)( cω ), the deeper will be the erosions at the bed and the stronger the direct action of flow 
on the banks – and, consequently, the larger the lateral expansion velocity.  

Thank you very much for your attention. 
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Notation 

  = energy-related property of flow (subjected to minimization during the regime channel ∗A
                         formation) 
  = flow width B
  = dimensionless (Chézy) resistance factor c
 D  = typical grain size (usually ) 50D
 Fr  = flow Froude number 
  = flow depth h
 )( 00 θJ  = Bessel function of first kind and zero-th order (of 0θ ) 
  = granular roughness of bed surface sk )2( 50Dks ≈  
  = longitudinal coordinate; l 0=l  at the crossover   (see Fig. 1) iO
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  = meander length (measured along ) L cl
  = longitudinal coordinate along the centreline of a meandering flow;  at the crossover   cl 0=cl iO
                         (see Fig. 1) 
  = porosity of granular material p
  = flow rate Q
  = specific volumetric bed-load rate vector sq
 R  = curvature radius of the centreline of a meandering flow 
  = flow Reynolds number Re )/( νavhu=  
  = bed slope  S
  =   streamline that divides the flow rate Q  in two equal (left and right) parts (see Fig. 13) ∗s
 t  = time 
 ,  = development duration of vertical and horizontal bursts, respectively VT HT
  = development duration of the regime channel RT
  = channel-averaged flow velocity avu
 u  = vertically-averaged longitudinal flow velocity 
 U  = magnitude of the vertically-averaged local flow velocity vector  U
  = shear velocity ∗v )/( 0 ρτ=  
 Γ′v  = average radial velocity of the cross-circulatory flow directed towards inner bank 
  = local displacement velocity of the meandering bed surface (in the vertical direction) W
 x  = direction of rectilinear flow; also general direction of meandering flow 
 y  = direction horizontally perpendicular to x  
  = Vertical direction z
  = bed elevation measured with regard to an arbitrary reference datum  bz
 γ  = fluid specific weight 
 θ , 0θ  = deflection angle of a meandering flow at any  and at cl 0=cl , respectively (see Fig. 1) 
 λ  = dimensionless longitudinal coordinate, measured along  from the apex-section , of the  cl ia
   cross-section where (within a loop ) maximum erosion-deposition occurs  iO ia 1+iO
   (see Fig. 15) 
 Vλ , Hλ  = length of vertical and horizontal bursts, respectively 
  = length of bed form i  (  if dunes; iΛ di = ai =  if alternate bars) 
  = meander wavelength MΛ
 ν  = fluid kinematic viscosity 
 cξ  = dimensionless counterpart of  (cl Llcc /=ξ ) 
 0cξ  = dimensionless longitudinal coordinate, measured along  from the crossover , of the  cl iO
   upstream-end of a -long convergence-divergence flow zone where 2/L 0>ω  (see Fig. 15) 
 ρ  = fluid density 
 σ  = sinuosity of a meandering flow ( ML Λ= /σ ) 
  = bed shear stress 0τ
 ω  = deviation angle (angle between the vertically-averaged streamline s  and the coordinate line   l
   of a meandering flow)  
 cω  = value of ω  at the centreline of a meandering flow 
 
Subscripts: 
 0 marks the value of a quantity at time 0=t  
 a  marks the value of a quantity at the apex-section of a meandering stream 
 av marks the channel-averaged value of a quantity  
 max marks the maximum value of a quantity 
              R       marks the regime value of a quantity 
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